a2 United States Patent
Chin et al.

US009203690B2

(10) Patent No.: US 9,203,690 B2
(45) Date of Patent: Dec. 1, 2015

(54) ROLE BASED MULTICAST MESSAGING
INFRASTRUCTURE

(71) Applicant: Brocade Communications Systems,
Inc., San Jose, CA (US)

(72) Inventors: Bill Ying Chin, San Jose, CA (US); Dan
N. Retter, Cupertino, CA (US); Mayur
Mahajan, San Francisco, CA (US);
Poongovan Ponnavaikko, Santa Clara,
CA (US)

(73) Assignee: Brocade Communications Systems,
Inc., San Jose, CA (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 152 days.
(21) Appl. No.: 13/827,641
(22) Filed: Mar. 14,2013
(65) Prior Publication Data
US 2014/0089484 A1l Mar. 27, 2014

Related U.S. Application Data
(60) Provisional application No. 61/704,930, filed on Sep.

24, 2012.
(51) Int.CL

GOGF 15/173 (2006.01)

HO4L 12/24 (2006.01)

HO4L 12/58 (2006.01)

HO4L 12/801 (2013.01)

HO4L 12/761 (2013.01)

HO4L 12/773 (2013.01)
(52) US.CL

CPC oo HO4L 41/00 (2013.01); HO4L 47/15

(2013.01); HO4L 51/28 (2013.01); HO4L 45/16
(2013.01); HO4L 45/60 (2013.01)

(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

5,159,592 A 10/1992 Perkins
5,278,986 A 1/1994 Jourdenais et al.
5,410,710 A 4/1995 Sarangdhar et al.
5,550,816 A 8/1996 Hardwick et al.
5,649,110 A 7/1997 Ben-Nun et al.
5,701,502 A 12/1997 Baker et al.
5,732,209 A 3/1998 Vigil et al.
5,828,578 A 10/1998 Blomgren

(Continued)

FOREIGN PATENT DOCUMENTS

EP 0887731 Al 12/1998
EP 0926859 A 6/1999
(Continued)
OTHER PUBLICATIONS

U.S. Appl. No. 14/514,253 filed by Zhou et al. on Oct. 14, 2014,
(Unpublished).

(Continued)

Primary Examiner — John B Walsh
(74) Attorney, Agent, or Firm — Kilpatrick Townsend &
Stockton LLP

(57) ABSTRACT

Certain embodiments of the present invention provide tech-
niques that enable messages to be sent to a processing entity
within a computing device without knowing the network
address of the processing entity. In certain embodiments,
instead of using the network address of the processing entity,
a message can be communicated to the processing entity
using information indicative of a role or state or function
performed by the processing entity.

16 Claims, 17 Drawing Sheets

100

102

104
/)

FIRsT
PROCESSING
EnTiTy

1

106 SECOND
PROCESSING
| | ENTITY

THIRD 112
PROCESSING
ENTITY

FIRST ROLE

SECOND ROLE

US 9,203,690 B2

Page 2
(56) References Cited 7,236,453 B2 6/2007 Visser et al.
7,269,133 B2 9/2007 Luetal.
U.S. PATENT DOCUMENTS 7,284,236 B2 10/2007 Zhou et al.
7,292,535 B2 11/2007 Folkes et al.
5,878,232 A 3/1999 Marimuthu 7,305,492 B2 12/2007 Bryers et al.
5,878:264 A 3/1999 Ebrahim 7,308,503 B2 12/2007 Giraud et al.
5.970.232 A 10/1999 Passint et al. 7,315,552 B2 1/2008 Kalkunte et al.
5:978:578 A 11/1999 Azarya et al. 7,317,722 B2 1/2008 Aquino et al.
6,047,330 A 4/2000 Stracke, Jr. 7,324,500 Bl 1/2008 Blackmon et al.
6,097,718 A 8/2000 Bion 7,327,671 B2 2/2008 Karino et al.
6,101,188 A 8/2000 Sekine et al. 7,339,903 B2 3/2008 O’N§111
6,104,700 A 8/2000 Haddock et al. 7,360,084 Bl 4/2008 Hardjono
6,111,888 A 8/2000 Green et al. 7,362,700 B2 4/2008 Frick et al.
6,115,393 A 9/2000 Engel et al. 7,382,736 B2 6/2008 Mitchem et al.
6,119,200 A 9/2000 George 7,385,977 B2 6/2008 Wu et al.
6,161,169 A 12/2000 Cheng 7,392,424 B2 6/2008 Ho et al.
6,233,236 Bl 5/2001 Nelson et al. 7,404,006 Bl 7/2008 Slaughter etal. 709/238
6,269,391 Bl 7/2001 Gillespie 7,406,037 B2 7/2008 Okita
6,282,678 Bl 8/2001 Snay et al. 7,417,947 Bl 8/2008 Marques et al.
6,331,983 Bl 12/2001 Haggerty et al. 7,417,990 B2 8/2008 Ikeda et al.
6,374,292 Bl 4/2002 Srivastava et al. 7,418,439 B2 82008 Wong
6,397,242 Bl 5/2002 Devine et al. 7,424,014 B2 9/2008 Mattes et al.
6,424,629 Bl 7/2002 Rubino et al. 7,441,017 B2 10/2008 Watson et al.
6,430,609 Bl 8/2002 Dewhurst et al. 7,444,422 Bl 10/2008 Li
6,442,682 Bl 8/2002 Pothapragada et al. 7,447,225 B2 11/2008 Windisch et al.
6,496,510 Bl 12/2002 Tsukakoshi et al. 7483370 Bl 1/2009 Dayal et al.
6,496,847 Bl 12/2002 Bugnion et al. 7,483,433 B2 1/2009 Simmons et al.
6,526,054 Bl 2/2003 Li et al. 7,503,039 B2 3/2009 Inoue et al.
6,567,417 B2 5/2003 Kalkunte et al. 7,518,986 Bl 4/2009 Chadalavada et al.
6,570,875 Bl 5/2003 Hegde 7,522,521 B2 4/2009 Bettink et al.
6,577,634 Bl 6/2003 Tsukakoshi et al. 7,533,254 B2 5/2009 Dybsetter et al.
6,580,727 Bl 6/2003 Yim et al. 7,535,826 Bl 5/2009 Cole et al.
6,587,469 Bl 7/2003 Bragg 7,599,284 B1 10/2009 Di Benedetto et al.
6,597,699 Bl 7/2003 Ayres 7,609,617 B2 10/2009 Appanna et al.
6,604,146 Bl 8/2003 Rempe et al. 7,613,183 Bl 11/2009 Brewer et al.
6,608,819 Bl 82003 Mitchem et al. 7,620,953 Bl 112009 Tene et al.
6,633,916 B2 10/2003 Kauffman 7,652,982 Bl 1/2010 Kovummal
6,636,895 Bl 10/2003 Lietal. 7,656,409 B2 2/2010 Cool et al.
6,674,756 Bl 1/2004 Rao et al. 7,664,020 B2 2/2010 Luss
6,675,218 Bl 1/2004 Mahler et al. 7,694,298 B2 4/2010 Goud et al.
6,678,248 Bl 1/2004 Haddock et al. 7,720,066 B2 52010 Weyman et al.
6,680,904 Bl 1/2004 Kaplan et al. 7,729,296 Bl 6/2010 Choudhary
6,683,850 Bl1* 1/2004 Dunmningetal. 370/231 7,739,360 B2 6/2010 Watson et al.
6,691,146 Bl 2/2004 Armstrong et al. 7,751,311 B2 7/2010 Ramaiah et al.
6,704,925 Bl 3/2004 Bugnion 7,787,360 B2 8/2010 Windisch et al.
6,711,357 Bl 3/2004 Brewer et al. 7,787,365 Bl 82010 Marques et al.
6,711,672 Bl 3/2004 Agesen 7,788,381 B2 8/2010 Watson et al.
6,725,289 Bl 4/2004 Waldspurger et al. 7,802,073 Bl 9/2010 Cheng et al.
6,731,601 Bl 5/2004 Krishna ef al. 7.804,769 Bl 9/2010 Tuplur et al.
6,732,220 B2 5/2004 Babaian et al. 7,804,770 B2 9/2010 Ng
6,763,023 Bl 7/2004 Gleeson et al. 7,805,516 B2 9/2010 Kettler et al.
6,785,886 Bl 8/2004 Limetal. 7,830,802 B2 11/2010 Huangetal.
6,789,156 Bl 9/2004 Waldspurger 7,830,895 B2 11/2010 Endo et al.
6.791.980 Bl 9/2004 Li 7,843,920 B2 11/2010 Karino et al.
6:795’966 Bl 9/2004 Lim et al. 7,843,930 B2 11/2010 Mattes et al.
6,847:638 Bl 1/2005 Wu 7,873,776 B2 1/2011 Hetherington et al.
6,854,054 Bl 2/2005 Kavanagh 7,886,195 B2 2/2011 Mayer
6,859,438 B2 2/2005 Haddock et al. 7,894,334 B2 22011 Wen et al.
6,879,559 Bl 4/2005 Blackmon et al. 7929424 B2 4/2011 Kochhar et al.
6,880,022 Bl 4/2005 Waldspurger et al. 7,940,650 Bl 52011 Sandhir et al.
6,804,970 Bl 5/2005 McDermott, III et al. 7944811 B2 52011 Windisch et al.
6,898,189 Bl 5/2005 Di Benedetto et al. 7974315 B2 72011 Yanetal.
6,910,148 Bl 6/2005 Ho et al. 8,009,671 B2 8/2011 Guo et al.
6,938,179 B2 8/2005 Iyeretal. 8,014,394 B2 9/2011 Ram
6,944,699 Bl 9/2005 Bugnion et al. 8,028,290 B2 9/2011 Rymarczyk et al.
6,961,806 Bl 11/2005 Agesen et al. 8,040,884 B2 10/2011 Arunachalam et al.
6,961,941 Bl 11/2005 Nelson et al. 8,074,110 B2 122011 Veraetal.
6,975,587 Bl 12/2005 Adamski et al. 8,086,906 B2 122011 Ritzet al.
6,975,639 Bl 12/2005 Hill et al. 8,089,964 B2 1/2012 Loetal.
7,039,720 B2 5/2006 Alfieri et al. 8,095,691 B2 1/2012 Verdoorn, Jr. et al.
7,058,010 B2 6/2006 Chidambaran et al. 8,099,625 Bl 1/2012 Tseng et al.
7,061,858 Bl 6/2006 Di Benedetto et al. 8,102,848 Bl 1/2012 Rao
7,065,059 Bl 6/2006 Zinin 8,121,025 B2 2/2012 Duan et al.
7,065,079 Bl 6/2006 Patra et al. 8,131,833 B2 3/2012 Hadas et al.
7,080,283 Bl 7/2006 Songer et al. 8,149,691 Bl 4/2012 Chadalavada et al.
7,093,160 B2 8/2006 Lau et al. 8,156,230 B2 4/2012 Bakke et al.
7,133,399 Bl 11/2006 Brewer et al. 8,161,260 B2 4/2012 Srinivasan
7,188,237 B2 3/2007 Zhou et al. 8,180,923 B2 5/2012 Smith et al.
7,194,652 B2 3/2007 Zhou et al. 8,181,174 B2 5/2012 Liu

US 9,203,690 B2

(56)

8,291,430

8,335,219

8,341,625

8,345,536

8,406,125

8,495,418

8,503,289

8,576,703

8,607,110

8,769,155

8,776,050
2002/0013802
2002/0035641
2002/0103921
2002/0129166
2002/0150094
2003/0084161
2003/0105794
2003/0202520
2004/0001485
2004/0030766
2004/0078625
2005/0028028
2005/0036485
2005/0055598
2005/0114846
2005/0149633
2005/0213498
2006/0002343
2006/0004942
2006/0018253
2006/0018333
2006/0090136
2006/0143617
2006/0171404
2006/0176804
2006/0184349
2006/0184938
2006/0224826
2006/0274649
2006/0294211
2007/0027976
2007/0036178
2007/0076594
2007/0162565
2007/0169084
2007/0174309
2007/0189213
2008/0022410
2008/0068986
2008/0082810
2008/0120518
2008/0159325
2008/0165681
2008/0165750
2008/0189468
2008/0201603
2008/0212584
2008/0222633
2008/0225859
2008/0243773
2008/0244222
2008/0250266
2009/0028044
2009/0031166
2009/0036152
2009/0037585
2009/0049537
2009/0051492
2009/0054045
2009/0080428
2009/0086622
2009/0092135
2009/0094481
2009/0106409

Page 3
References Cited 2009/0185506 Al 7/2009 Watson et al.

2009/0198766 Al 8/2009 Chen et al.
U.S. PATENT DOCUMENTS 2009/0216863 Al 8/2009 Gebhart et al.

2009/0219807 Al 9/2009 Wang
B2 10/2012 Anand et al. 2009/0245248 Al 10/2009 Arberg et al.
B2 12/2012 Simmons et al. 2009/0316573 Al 12/2009 Lai
B2 12/2012 TFerris et al. 2010/0017643 Al 1/2010 Baba et al.
Bl 1/2013 Rao et al. 2010/0039932 Al 2/2010 Wen et al.
B2 3/2013 Dholakia et al. 2010/0058342 Al 3/2010 Machida
B2 7/2013 Abraham et al. 2010/0064293 Al 3/2010 Kang et al.
B2 8/2013 Dholakia et al. 2010/0107162 Al 4/2010 Edwards et al.
B2 11/2013 Dholakia et al. 2010/0138208 Al 6/2010 Hattori et al.
Bl 12/2013 Pengetal. 2010/0138830 Al 6/2010 Astete et al.
B2 7/2014 Nagappan et al. 2010/0169253 Al 7/2010 Tan
B2 7/2014 Plouffe et al. 2010/0235662 Al 9/2010 Nishtala
Al 1/2002 Mori et al. 2010/0257269 Al 10/2010 Clark
Al 3/2002 Kurose et al. 2010/0278091 Al 11/2010 Sung et al.
Al 8/2002 Nair et al. 2010/0287548 Al 11/2010 Zhou et al.
Al 9/2002 Baxter et al. 2010/0325381 Al 12/2010 Heim
Al 10/2002 Cheng et al. 2010/0325485 Al 12/2010 Kamath et al.
Al 5/2003 Watson et al. 2011/0010709 Al 1/2011 Anand et al.
Al 6/2003 Jasinschi et al. 2011/0023028 Al 1/2011 Nandagopal et al.
Al 10/2003 Witkowski et al. 2011/0072327 Al 3/2011 Schoppmeier et al.
Al 1/2004 Frick et al. 2011/0125949 Al 5/2011 Mudigonda et al.
Al 2/2004 Witkowski 2011/0126196 Al 5/2011 Cheung et al.
Al 4/2004 Rampuria et al. 2011/0154331 Al 6/2011 Ciano et al.
Al 2/2005 Jibbe 2011/0173334 Al* 7/2011 Shahccccovveviieirnn 709/228
Al 2/2005 Eilers et al. 2011/0228770 Al 9/2011 Dholakia et al.
Al 3/2005 Chen et al. 2011/0228771 Al 9/2011 Dholakia et al.
Al 5/2005 Banks et al. 2011/0228772 Al 9/2011 Dholakia et al.
Al 7/2005 Natarajan et al. 709/238 2011/0228773 Al 9/2011 Dholakia et al.
Al 9/2005 Appanna et al. 2011/0231578 Al 9/2011 Nagappan et al.
Al 1/2006 Nain et al. 2012/0023309 Al 1/2012 Abraham et al.
Al 1/2006 Hetherington et al. 2012/0023319 Al 1/2012 Chin et al.
Al 1/2006 Windisch et al. 2012/0030237 Al 2/2012 Tanaka
Al 1/2006 Windisch et al. 2012/0158995 Al 6/2012 McNamee et al.
Al 4/2006 Miller et al. 2012/0174097 Al 7/2012 Levin
Al 6/2006 Knauerhase et al. 2012/0230240 Al 9/2012 Nebat et al.
Al 8/2006 Nalawade et al. 2012/0290869 Al 11/2012 Heitz
Al 8/2006 Shibata 2013/0070766 Al 3/2013 Pudiyapura
Al 8/2006 Goud et al. 2013/0211552 Al 8/2013 Gomez et al.
Al 8/2006 Mangold 2013/0259039 Al 10/2013 Dholakia et al.
Al 10/2006 Arai et al. 2014/0007097 Al 1/2014 Chin et al.
Al 12/2006 Scholl 2014/0029613 Al 1/2014 Dholakia et al.
Al 12/2006 Amato 2014/0036915 Al 2/2014 Dholakia et al.
Al 2/2007 Sasame et al. 2014/0068103 Al 3/2014 Gyambavantha et al.
Al 2/2007 Hares et al. 2014/0089425 Al 3/2014 Chin et al.
Al 4/2007 Khan et al. 2014/0089484 Al 3/2014 Chin et al.
Al 7/2007 Hanselmann 2014/0095927 Al 4/2014 Abraham et al.
Al 7/2007 Frank et al.
Al 7/2007 Pettovello FOREIGN PATENT DOCUMENTS
Al 8/2007 Karino et al.
Al 172008 Diehl EP 1107511 A2 6/2001
Al 3/2008 Maranhao et al. EP 1939742 A2 2/2008
Al 4/2008 Cepulis et al. EP 2084605 A2 8/2009
Al 52008 Ritzetal. WO 2008/54997 A2 5/2008
Al 7/2008 Chen et al. WO 2014/004312 Al 1/2014
Al 7/2008 Huang et al.
Al 7/2008 Kim OTHER PUBLICATIONS
Al 8/2008 Schmidt et al.
Al 8/2008 Ritz et al. “GIGAswitch FDDI System—Manager’s Guide,” Part No.
N ggggg Eﬁ;liau etal. EK-GGMGA-MG BO01, Jun. 1993 first printing, Apr. 1995 second
Al 9/2008 Mitchem printing, Copyright 1995, 113 pages, Digital Equipment Corpora-
Al 10/2008 Patel et al. tion, Maynard, MA.
Al 1072008 Supalov et al. “GIGAswitch System—Manager’s Guide,” Part No. EK-GGMGA-
Al 1072008 Desai et al. MG.AOL, Jun. 1993, Copyright 1993, 237 pages, Digital Equipment
Al 1/2009 Wlndl_sch et al. Corporation, Maynard, MA.
Al 1/2009 Kathail et al. o . . .
Al 2/2009 Janneteau ef al. Brader_l et al., “Integrated Services in the Interr_let Architecture: an
Al 2/2009 Miloushev et al. Overview,” Jul. 1994, RFC 1633, Network Working Group, pp. 1-28.
Al 2/2009 Chen et al. Burke, “Vmware Counters Oracle, Microsoft With Free Update”,
Al 2/2009 Diaz et al. Nov. 13, 2007, 2 pages.
Al 2/2009 Zakrzewski et al. Chen, “New Paradigm in Application Delivery Networking:
Al 3/2009 Witkowski et al. Advanced Core Operating System (ACOS) and Multi-CPU Archi-
Al 4/2009 Ng tecture—They Key to Achieving Availability, Scalability and
Al 4/2009 Simmons et al. Preformance.” White Paper, May 2009, S pages, A10 Networks.
Al 4/2009 Vera et al. Cisco Systems, Inc., “BGP Support for Nonstop Routing (NSR) with
Al 4/2009 Murata Stateful Switchover (SSO).” Mar. 20, 2006, 18 pages.

US 9,203,690 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

European Search Report for Application No. EP 02254403, dated
Mar. 18, 2003, 3 pages.

European Search Report for Application No. EP 02256444, dated
Feb. 23, 2005, 3 pages.

Extreme v. Enterasys W1 Legal Transcript of Stephen R. Haddock,
May 7, 2008, vol. 2, 2 pages.

Fenner, et al., “Protocol Independent Multicast—Sparse Mode (PIM-
SM): Protocol Specification (Revised).” Network Working Group,
RFC 4601, Aug. 2006, pp. 1-151.

Floyd et al., “Link-sharing and Resource Management Models for
Packet Networks,” IEEE/ACM Transactions on Networking, Aug.
1995, vol. 3, No. 4, Copyright 1995, IEEE, 22 pages.

Freescale Semiconductor, Inc., “Freescale’s Embedded Hypervisor
for QorIQ™ P4 Series Communications Platform,” White Paper, Oct.
2008, Copyright 2008, 8 pages, Document No.
EMHYPQIQTP4CPWP, Rev. 1.

Freescale Semiconductor, Inc., “Embedded Multicore: An Introduc-
tion,” Jul. 2009, Copyright 2009, 73 pages, Document No.
EMBMCRM, Rev. 0.

Hardwick, “IP Multicast Explained,” Metaswitch Networks, Jun.
2004, 71 pages.

Hemminger, “Delivering Advanced Application Acceleration &
Security,” Application Delivery Challenge, Jul. 2007, 3 pages.

IP Infusion Brochure, “ZebOS® Network Platform: Transporting
You to Next Generation Networks,” ip infusion™ An ACCESS Com-
pany, Jun. 2008, 6 pages.

Kaashok et al., “An Efficient Reliable Broadcast Protocol,” Operating
System Review, Oct. 4, 1989, 15 pages.

Kakadia, et al., “Enterprise Network Design Patterns: High Avail-
ability” Sun Microsystems, Inc., Sun BluePrints™ Online, Revision
A, Nov. 26,2003, 37 pages, at URL: http://www.sun.com/blueprints.
Keshav, “An Engineering Approach to Computer Networking: ATM
Networks; the internet, and the Telephone Network,” Addison-
Wesley Professional Computing Series, part 1 of 5, May 15, 1997,
Copyright 1997, 148 pages, by At&T, Addison-Wesley Publishing
Company.

Keshav, “An Engineering Approach to Computer Networking: ATM
Networks; the internet, and the Telephone Network,” Addison-
Wesley Professional Computing Series, part 2 of 5, May 15, 1997,
Copyright 1997, 131 pages, by AT&T, Addison-Wesley Publishing
Company.

Keshav, “An Engineering Approach to Computer Networking: ATM
Networks; the internet, and the Telephone Network,” Addison-
Wesley Professional Computing Series, part 3 of 5, May 15, 1997,
Copyright 1997, 129 pages, by AT&T, Addison-Wesley Publishing
Company.

Keshav, “An Engineering Approach to Computer Networking: ATM
Networks; the internet, and the Telephone Network,” Addison-
Wesley Professional Computing Series, part 4 of 5, May 15, 1997,
Copyright 1997, 130 pages, by AT&T, Addison-Wesley Publishing
Company.

Keshav, “An Engineering Approach to Computer Networking: ATM
Networks; the internet, and the Telephone Network,” Addison-
Wesley Professional Computing Series, part 5 of 5, May 15, 1997,
Copyright 1997, 142 pages, by AT&T, Addison-Wesley Publishing
Company.

Khan, “IP Routing Use Cases,” Cisco Press, Sep. 22, 2009, pp. 1-16,
at URL: http://www.ciscopress.com/articles/printerfriendly.
asp?p=1395746.

Manolov, et al., “An Investigation into Multicasting, Proceedings of
the 14th Annual Workshop on Architecture and System Design,”
(ProRISC2003), Veldhoven, The Netherlands, Nov. 2003, 6 pages.
Moy, “OSPF Version 2,” Network Working Group, RFC 2328, Apr.
1998, 204 pages.

Order Granting/Denying Request for Ex Parte Reexamination for
U.S. Appl. No. 90/010,432, mailed on May 21, 2009, 18 pages.
Order Granting/Denying Request for Ex Parte Reexamination for
U.S. Appl. No. 90/010,433, mailed on May 22, 2009, 15 pages.

Order Granting/Denying Request for Ex Parte Reexamination for
U.S. Appl. No. 90/010,434, mailed on May 22, 2009, 20 pages.
Pangal, “Core Based Virtualization—Secure, Elastic and Determin-
istic Computing is Here . . . ,” Blog Posting, May 26, 2009, 1 page,
printed on Jul. 13, 2009, at URL: http://community.brocade.com/
home/community/brocadeblogs/wingspan/blog/tags/serveri. . . .
Partridge, “A Proposed Flow Specification,” RFC 1363, Sep. 1992,
pp. 1-20, Network Working Group.

Pepelnjak, et al., “Using Multicast Domains,” informIT, Jun. 27,
2003, pp. 1-29, at URL: http://www.informit.com/articles/
printerfriendly.aspx?p=32100.

Product Category Brochure, “J Series, M Series and MX Series
Routers—Juniper Networks Enterprise Routers—New Levels of
Performance, Availability, Advanced Routing Features, and Opera-
tions Agility for Today’s High-Performance Businesses,” Juniper
Networks, Nov. 2009, 11 pages.

Quickspecs, “HP Online VM Migration (for HP Integrity Virtual
Machines)”, Wordwide—Version 4, Sep. 27, 2010, 4 pages.
Riggsbee, “From ADC to Web Security, Serving the Online Commu-
nity,” Blog Posting, Jul. 8, 2009, 2 pages, printed on Dec. 22, 2009, at
URL: http://community.brocade.com/home/community/
brocadeblogs/wingspan/blog/2009/07/0. . . .

Riggsbee, “You’ve Been Warned, the Revolution Will Not Be Tele-
vised,” Blog Posting, Jul. 9, 2009, 2 pages, printed on Dec. 22, 2009,
at URL: http://community.brocade.com/home/community/
brocadeblogs/wingspan/blog/2009/07/0. . . .

Rodbell, “Protocol Independent Multicast—Sparse Mode,” Com-
msDesign, Dec. 19, 2009, pp. 1-5, at URL: http://www.com-
msdesign.com/main/9811/981 1standards htm.

Schlansker, et al., “High-Performance Ethernet-Based Communica-
tions for Future Multi-Core Processors,” SC07 Nov. 10-16, 2007,
Copyright 2007, 12 pages, ACM.

Wolf, et al., “Design Issues for High-Performance Active Routers,”
IEEE Journal on Selected Areas in Communications, IEEE, Inc. New
York, USA, Mar. 2001, vol. 19, No. 3, Copyright 2001, IEEE, 6
pages.

Notification of Transmittal of the International Search Report and the
Written Opinion of the International Searching Authority, or the
Declaration; International Search Report and Written Opinion of The
International Searching Authority for International Application No.
PCT/US2013/047105 mailed on Oct. 29, 2013, 8 pages.

Non-Final Office Action for U.S. Appl. No. 09/953,714, mailed on
Dec. 21, 2004, 16 pages.

Final Office Action for U.S. Appl. No.09/953,714, mailed on Jun. 28,
2005, 17 pages.

Non-Final Office Action for U.S. Appl. No. 09/896,228, mailed on
Jul. 29, 2005, 17 pages.

Non-Final Office Action for U.S. Appl. No. 09/953,714, mailed on
Jan. 26, 2006, 15 pages.

Final Office Action for U.S. Appl. No. 09/953,714, mailed on Aug.
17, 2006, 17 pages.

Non-Final Office Action for U.S. Appl. No. 09/896,228, mailed on
Mar. 5, 2007, 14 pages.

Final Office Action for U.S. Appl. No. 09/896,228, mailed on Aug.
21, 2007, 15 pages.

Non-Final Office Action for U.S. Appl. No. 09/896,228, mailed on
Sep. 7, 2006, 17 pages.

Notice of Allowance for U.S. Appl. No. 09/896,228, mailed on Jun.
17, 2008, 20 pages.

Non-Final Office Action for U.S. Appl. No. 12/210,957, mailed on
Sep. 2, 2009, 16 pages.

Notice of Allowance for U.S. Appl. No. 09/953,714, mailed on Sep.
14, 2009, 6 pages.

Notice of Allowance for U.S. Appl. No. 12/210,957, mailed on Feb.
4, 2010, 10 pages.

Non-Final Office Action for U.S. Appl. No. 12/333,029, mailed on
May 27, 2010, 29 pages.

Non-Final Office Action for U.S. Appl. No. 12/333,029, mailed on
Mar. 30, 2012, 14 pages.

Non-Final Office Action for U.S. Appl. No. 12/626,432 mailed on
Jul. 12,2012, 13 pages.

Non-Final Office Action for U.S. Appl. No. 12/913,572 mailed on
Aug. 3, 2012, 6 pages.

US 9,203,690 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

Non-Final Office Action for U.S. Appl. No. 12/823,073 mailed on
Aug. 6, 2012, 21 pages.

Notice of Allowance for U.S. Appl. No. 12/333,029 mailed on Aug.
17,2012, 5 pages.

Non-Final Office Action for U.S. Appl. No. 12/913,598 mailed on
Sep. 6, 2012, 10 pages.

Non-Final Office Action for U.S. Appl. No. 12/913,612 mailed on
Sep. 19, 2012, 11 pages.

Non-Final Office Action for U.S. Appl. No. 12/913,650 mailed on
Oct. 2, 2012, 9 pages.

Notice of Allowance for U.S. Appl. No. 12/913,572 mailed on Nov.
21,2012, 7 pages.

Non-Final Office Action for U.S. Appl. No. 12/842,936 mailed on
Nov. 28, 2012, 12 pages.

Final Office Action for U.S. Appl. No. 12/823,073 mailed on Jan. 23,
2013, 23 pages.

Notice of Allowance for U.S. Appl. No. 12/913,598 mailed on Mar.
12, 2013, 5 pages.

Notice of Allowance for U.S. Appl. No. 12/913,650 mailed on Mar.
25, 2013, 6 pages.

Notice of Allowance for U.S. Appl. No. 12/842,936 mailed on Apr. 8,
2013, 6 pages.

Final Office Action for U.S. Appl. No. 12/626,432 mailed on Apr. 12,
2013, 14 pages.

Non-Final Office Action for U.S. Appl. No. 12/842,945 mailed on
Jun. 20, 2013, 14 pages.

Notice of Allowance for U.S. Appl. No. 12/913,598 mailed on Jul. 9,
2013, 6 pages.

Advisory Action for U.S. Appl. No. 12/626,432 mailed on Sep. 25,
2013, 4 pages.

Non-Final Office Action for U.S. Appl. No. 12/626,432 mailed on
Nov. 21, 2013, 9 pages.

Notice of Allowance for U.S. Appl. No. 12/823,073 mailed on Feb.
19, 2014, 8 pages.

Final Office Action for U.S. Appl. No. 12/842,945 mailed on Mar. 7,
2014, 13 pages.

Final Office Action for U.S. Appl. No. 12/626,432 mailed on Jul. 3,
2014, 12 pages.

Non-Final Office Action for U.S. Appl. No. 13/925,696 mailed on
Aug. 27, 2014, 8 pages.

Non-Final Office Action for U.S. Appl. No. 13/796,136 mailed on
Sep. 8, 2014, 19 pages.

Non-Final Office Action for U.S. Appl. No. 12/842,945 mailed on
Sep. 17, 2014, 7 pages.

Notice of Allowance for U.S. Appl. No. 13/925,696 mailed on Jan. 7,
2015, 6 pages.

Non-Final Office Action for U.S. Appl. No. 12/626,432 mailed on
Jan. 15, 2015, 13 pages.

Non-Final Office Action for U.S. Appl. No. 13/770,751 mailed on
Feb. 24, 2015, 10 pages.

Notice of Allowance for U.S. Appl. No. 13/925,723 mailed on Mar.
17,2015, 5 pages.

Non-Final Office Action for U.S. Appl. No. 13/840,540 mailed on
Mar. 23, 2015, 14 pages.

Final Office Action for U.S. Appl. No. 13/796,136 mailed on Mar. 27,
2015, 17 pages.

Non-Final Office Action for U.S. Appl. No. 13/621,138 mailed on
Aug. 22, 2014, 6 pages.

Notice of Allowance for U.S. Appl. No. 13/621,138 mailed on May
11, 2015, 5 pages.

Non-Final Office Action for U.S. Appl. No. 14/050,263, mailed on
Apr. 23, 2015, 5 pages.

Notice of Allowance for U.S. Appl. No. 12/842,945, mailed on Apr.
8, 2015, 9 pages.

Brocade Serverlron ADX 1000, 4000, and 8000 Series Frequently
Asked Questions, 10 pages, Copyright 2009, (Rev. Apr. 2009), Bro-
cade Communications Systems, Inc.

Cisco IP Routing Handbook, (Sep. 20, 2000), 24 pages, M& T Books.
CISCO Systems, Inc., “Graceful Restart, Non Stop Routing and IGP
routing protocol timer Manipulation,” Copyright 2008, (Rev. Jun.
2008) 4 pages.

CISCO Systems, Inc., “Intermediate System-to-Intermediate System
(IS-IS) Support for Graceful Restart (GR) and Non-Stop Routing
(NSR),” Copyright 2008 (Rev. Jun. 2008), pp. 1-3.

CISCO Systems, Inc., “Internet Protocol Multicast,” Internetworking
Technologies Handbook, 3rd Edition, (Dec. 2000), Chapter 43, 16
pages.

CISCO Systems, Inc., “Multicast Quick—Start Configuration
Guide,” Document ID:9356, Copyright 2008-2009, (Aug. 30, 2005),
15 pages.

Demers et al., “Analysis and Simulation of a Fair Queueing Algo-
rithm,” Xerox PARC, (Jan. 1990), 12 pages, ACM.

May, et al., “An Experimental Implementation of Traffic Control for
IP Networks”, (Jun. 23-25, 1997), 11 pages, Sophia-Antipolis Cedex,
France.

TCP/IP Tllustrated, vol. 2: The Implementation, Gray R. Wright and
W. Richard Stevens, Addison-Wesley, (Feb. 10, 1995), 23 pages.
CISCO Systems, Inc., “Warm Reload,” CISCO IOS Releases
12.3(2)T, 12.2(18)S, and 12.2(27)SBC, Copyright 2003, 14 pages.
Intel® Virtualization Technology, Product Brief, “Virtualization
2.0—Moving Beyond Consolidation”, 2008, 4 pages.

Kaplan, “Part 3 in the Reliability Series: NSR™ Non-Stop Routing
Technology,” White Paper, Avici Systems, Copyright 2002, 8 pages.
Lee, et al., “Open Shortest Path First (OSPF) Conformance and
Performance Testing,” White Papers, Ixia—Ieader in Convergence
IP Testing, Copyright 1998-2004, pp. 1-17.

Vmware., “Automating High Availability (HA) Services With
VMware HA”, VMware Infrastructure, Copyright ®1998-2006, 15
pages.

Vmware, “Dynamic Balancing and Allocation of Resources for Vir-
tual Machines”, Product Datasheet, Copyright® 1998-2006, 2 pages.
Vmware, “Live Migration for Virtual Machines Without Service
Interruption”, Product Datasheet, Copyright® 2009 Vmware, Inc., 4
pages.

Vmware, “Resource Management with Vmware DRS”, VMware
Infrastructure, Copyright® 1998-2006, 24 pages.

Notice of Allowance for U.S. Appl. No. 13/621,138, mailed on Jul.
17,2015, 5 pages.

* cited by examiner

U.S. Patent Dec. 1, 2015 Sheet 1 of 17 US 9,203,690 B2
100
/\j
102
S~
104
'/'\)
FIRST
PROCESSING
ENTITY
114
L~/
110
R
S
106 SECOND THIRD 112
PROCESSING PROCESSING
~4 EnTITY EntY VT
108
FIRST ROLE SECOND ROLE

FIG. 1

U.S. Patent Dec. 1, 2015 Sheet 2 of 17 US 9,203,690 B2
100
/\j
102
S~
104
'/'\)
FIRST
PROCESSING
ENTITY
114
L~/
110
R
S
106 SECOND THIRD 112
PROCESSING PROCESSING
~4 EnTITY ENTITY ~/
108
SECOND ROLE FIRST ROLE

FIG. 2

U.S. Patent Dec. 1, 2015 Sheet 3 of 17 US 9,203,690 B2

304
PoOL IDENTIFIER L~
306
316 DESTINATION IDENTIFIER | /"_~
308
ROLE IDENTIFICATION INFO |~ _~
SEQUENCE FRAGMENT 310
NUMBER NUMBER N\
/\J
312

314
/\/

PAYLOAD

300 FIG. 3

U.S. Patent Dec. 1, 2015 Sheet 4 of 17 US 9,203,690 B2

400
ya Y%
MC ACTIVE 438 MC STANDBY
V%
A =1 432
426 / \LAPooL A Lot = 101 PooL A
/A ~_ 404
402
A~ 434
/ T\ NETWORK NETWORK ~
428 LAYER (NL) LAYER (NL) 436
DATA LINK DataLnk 1
430 7| “ILAYER (DLL) LAYER (DLL)
424
V%
DLL DLL DLL DLL DLL DLL
NL NL NL NL NL NL
ACTIVE || STANDBY ACTIVE || STANDBY ACTIVE || STANDBY
) LC SLoT 1)) LC SLoT 2) JLC SLOT BJ
([) T [N [[
\ \ < \ \ < \ \ <
412 414 416 418 420 422
406 408 410

FIG. 4

U.S. Patent Dec. 1, 2015 Sheet 5 of 17 US 9,203,690 B2

A L 502
PPLICATION LAYER ~_/
504
PRESENTATION LAYER ~_/
506
SESSION LAYER ~_/
508
TRANSPORT LAYERp~_/
MESSAGING
INFRASTRUCTURE
(M) 510

g NETWORK LAYER [™_/

512
DATA LINK LAYER (I.E., ETHERNET) [™_/

514
PHYSICAL N\

FIG. 5

U.S. Patent

606

Dec. 1, 2015 Sheet 6 of 17

PooL NAME (APPLICATION ROLE)

Y LC SLOT ROLE | MM SLoT RoOLE

ROLE IDENTIFICATION INFO

FIG. 6

US 9,203,690 B2

604

602

608

U.S. Patent Dec. 1, 2015 Sheet 7 of 17 US 9,203,690 B2

GENERATE A PACKET

702
COMPRISING DESTINATION L~
INFORMATION AND ROLE
INDICATORS
704

TRANSMIT THE PACKET FROM L~
THE SENDER TO A RECEIVER

706

RECEIVE, AT THE RECIEVER, |~
THE PACKET

l

DETERMINE THAT THE 708
RECIEVER IS AN INTENDED
RECIPIENT

FIG.7

U.S. Patent Dec. 1, 2015 Sheet 8 of 17 US 9,203,690 B2
802 804
/\/ /\/
RECEIVER SENDER 810
806
RECEIVE QUEUE /~_/
808 HW 812
r~_
a4 OO/V% HW /\/814
- Ugy %%, ERROR QUEUE
PooL A %1y, 0400 PooL A
Ao\
~
<_ ____________
SEND MESSAGE

FIG. 8

U.S. Patent Dec. 1, 2015 Sheet 9 of 17

ASSIGN A MULTICAST-
RELATED MESSAGE TO A
PRIORITY CLASS

l

TRANSMIT MESSAGE IN-
ORDER WITHIN THE SAME
PRIORITY CLASS

¢

FIG. 9

US 9,203,690 B2

902

904

U.S. Patent Dec. 1, 2015 Sheet 10 of 17 US 9,203,690 B2

APPLICATION MAKES A SEND 1002

MESSAGE REQUEST O
FRAGMENT MESSAGE INTO 1004
PACKETS NS

l

ADD M| HEADER AND ASSIGN
SEQUENCE NUMBER/

FRAGMENT NUMBER TO EACH /\/1006

FRAGMENT

l

1008

TRANSMIT PACKET

1012
S
Message SAVE MESSAGE TO A SEND
1010 heeds Ack PRIORITY QUEUE
N l 1014
NS
< RUN RESEND STATE MACHINE

FIG. 10

U.S. Patent Dec. 1, 2015 Sheet 11 of 17 US 9,203,690 B2
S 1102
ELECT A MESSAGE WITH .y
HIGHEST PRIORITY
1108 1122
~ 1104 ~
TIMESTAMP | Y ELIGIBLE FOR WITH NEXT HIGHEST
RESEND? PRIORITY
{ 1110
— N
RESEND l 1114
MESSAGE 1112 1106 /AJ
/\J ACKED '\SAESSAGE STALE RELEASE
RELEASE w—— TALE OR MESSAGE
MESSAGE ACKED?
Y
N
REPORT
FAILURE

MESSAGES

RAVERSED?

SLEEP UNTIL WAKEUP EVENT

FIG. 11

U.S. Patent Dec. 1, 2015 Sheet 12 of 17

l 1202

PACKET RECEIVED

1204

PACKET DEST INFO
(ID/RoLE)= CURRENT
INFO?

1210

UPDATE MESSAGE
INFORMATION IN
MESSAGE QUEUE

I

WAKE UP RESEND
STATE MACHINE

CONTROL OR DATA
PACKET?

1216

L~

REASSEMBLE MESSAGE

MESSAGE
COMPLETE?

FIG. 12A

US 9,203,690 B2

1206

/J

DROP PACKET

1214

/J

NOTIFY
APPLICATION OF
THRESHOLD
MESSAGE

1220

RETURN UNTIL
NEXT FRAGMENT
ARRIVES

U.S. Patent Dec. 1, 2015 Sheet 13 of 17 US 9,203,690 B2

1222

/\J

FIND SOCKET TO
DELIVER MESSAGE
BASED ON PooL NAME

1226

—~

SEND NEGATIVE
ACKNOWLEDGEMENT

1230

L~

CHECK IF SEND HIGH THRESHOLD
THRESHOLD MESSAGE AND MARK
XCEEDED? SOCKET As HIGH

1234

/\J

DROP MESSAGE

)

DELIVER MESSAGE TO
APPLICATION THROUGH
SOCKET QUEUE

l 1238

/\J

RESPOND WITH ACK TO
SENDER (IF ACK
EXPECTED)

FIG. 12B

U.S. Patent Dec. 1, 2015 Sheet 14 of 17 US 9,203,690 B2

l /\13 "

Application Invokes the

Read Message API
l 1304

Deliver Message with

highest Priority to the

application

l 1306 1308

Socket has High
Threshold set and
crossed Low
Threshold?

FIG. 13

/\J

Send low Threshold
Message to the Sender

U.S. Patent

Dec. 1, 2015 Sheet 15 of 17

US 9,203,690 B2

mi_open(pool _name,
mi_open_params)
pool name — pool name string
mi_open_params
ACKed
Delayed send timeout and
buffer size
Returns mi socket

FIG. 14A

mi_sendmsg(mi_socket, dest,
payload, send_parms)
mi_socket — socket created with
mi6_open()
dest — sockaddr_mi
payload — payload to send
send_parms
Priority
Delayed send
Delayed flush

FIG. 14B

U.S. Patent Dec. 1, 2015 Sheet 16 of 17 US 9,203,690 B2
';§OOA
NETWORK DEVICE
MANAGEMENT CARD ——~1—15006
1516 —— T MEMORY
1 1 [Routng NExT-HoP | | |
1518 — TABLE INFO - 1520
CODE,
| L ——{ PROGRAM,
1922 1] INSTRUCTIONS
1514 PROCESSOR
LINECARD |— 1504
1510 — T OM 1— PACKET
PROCESSOR - 1508

1512 +—T—{ PRAM [—

R

v
1502
PORTS

-
.

FIG. 15A

U.S. Patent Dec. 1, 2015 Sheet 17 of 17 US 9,203,690 B2

1500B

Y

NETWORK DEVICE

1506 —1 MANAGEMENT CARD
1516 -+ MEMORY
| L [| Routing NEXT-HOP | L |
1518 — TABLE INFO - 1520
CODE,
| | ——1 PROGRAM,
1522 = INSTRUCTIONS
1514 PROCESSOR
1504 ——~ LINE CARD |
1532 +—T— MEMORY []
ROUTING NEXT-
1534— TaBLE || HOP INFO —1536
CODE, PROGRAM, |
INSTRUCTIONS 1538
|
1530 4—1T——— PROCESSOR
1510 +—1T—~ CAM [PACKET o8
PROCESSOR S
1512 +— T PRAM [—

RRE

Y
1502
PORTS

-
.

FIG. 15B

US 9,203,690 B2

1
ROLE BASED MULTICAST MESSAGING
INFRASTRUCTURE

CROSS-REFERENCES TO RELATED
APPLICATIONS

The present application is a non-provisional of and claims
the benefit and priority under 35 U.S.C. §119(e) of U.S.
Provisional Application No. 61/704,930, filed Sep. 24, 2012,
entitled CHASSIS BASED MULTICAST MESSAGING
INFRASTRUCTURE, the entire contents of which are incor-
porated herein by reference for all purposes.

BACKGROUND

The present disclosure relates to networking and more
particularly to techniques for communicating messages
between processing entities on a network device.

A networking device may have multiple processing entities
within the device. Traditionally, the processing entities com-
municate with each other using the messaging schemes sup-
ported by the well-known networking layer protocols. One
such well-known networking layer protocol from the Open
System Interconnection (OSI) networking stack is the Inter-
net Protocol (IP). IP facilitates delivery of packets from the
source to the destination solely based on IP addresses. For this
purpose, IP defines datagram structures that encapsulate the
data to be delivered.

IP based addressing of the processing entities requires
associating each processing entity with an IP address. IP
addressing requires that the specific address of the intended
recipient has to be known but there are situations where either
this address is not known or determining the address requires
extensive processing that adversely impacts the processing of
the system/device. Therefore, IP based communication
between the various processing entities does not allow flex-
ibility in addressing of the processing entities.

BRIEF SUMMARY

Embodiments of the present invention provide techniques
that enable messages to be sent to a processing entity within
a computing device without knowing the IP address of the
processing entity. In certain embodiments, instead of using an
1P address of the processing entity, a message can be com-
municated to the processing entity using information indica-
tive of a role or state or function performed by the processing
entity.

For example, in a network device, a communication infra-
structure is provided that enables messages or packets to be
sent to one or more processing entities within the network
device based upon roles, states, or functions performed by the
one or more processing entities. The communication infra-
structure allows multicasting of packets while ensuring reli-
able delivery of the packets. Further, the communication
infrastructure allows for prioritizing of the packets, allows for
delaying and buffering of the packets, and allows a packet to
be multicast to multiple intended recipients. The communi-
cation infrastructure also provides various congestion control
features including but not limited to providing back pressure
notification.

In certain embodiments, a device may include a first pro-
cessing entity configurable to transmit a packet comprising
destination information, the destination information compris-
ing a destination identifier and role identification informa-
tion, the destination identifier identifying a set of one or more
destinations, the role identification information identifying a

15

30

35

40

45

55

2

role, and a second processing entity, wherein the second
processing entity is further configurable to receive the packet,
and determine, based upon the destination information of the
packet, that the second processing entity is an intended recipi-
ent for the packet if the second processing entity is identified
by the destination identifier and the second processing entity
operates in a first role specified by role identification infor-
mation. In one embodiment, the packet may be transmitted
using an Ethernet protocol implemented in a networking
stack executing on the first processing unit.

In one implementation, the packet may be assigned a pri-
ority class from a plurality of priority classes. The packet may
also be delivered in the same order relative to other packets
within the same priority class to the second processing unit
that the packet is transmitted from the first processing unit.

In certain embodiments, the second processing entity may
be further configurable to generate an acknowledgment
packet for transmission to the first processing entity, upon
determining that the second processing entity is the intended
recipient. The first processing entity may be further config-
urable to release resources associated with the packet after
receiving the acknowledgement packet for the packet. Also,
the first processing entity is further configurable to retransmit
the packet upon receiving an error packet or an expiry of a
timer threshold.

In certain embodiments, a device may also include a third
processing entity configurable to operate in a second role,
wherein the third processing entity is further configurable to
receive the packet, and determine, based upon the destination
information of the packet, that the third processing entity is an
intended recipient for the packet if the third processing entity
is identified by the destination identifier and the third process-
ing entity operates in a second role specified by role identifi-
cation information. In one embodiment, the first role is an
active role and the second processing entity is further config-
urable to perform a set of routing-related functions in the
active role, and the second role is a standby role and the third
processing entity is further configurable to not perform the set
of routing-related functions in the standby role.

In certain embodiments, the third processing entity may
also be configurable to switch to the first role from a second
role, wherein the second processing entity is no longer avail-
able to operate in the first role, the third processing entity may
be further configurable to receive the packet, and determine,
based upon the destination information of the packet, that the
third processing entity is an intended recipient for the packet
if the third processing entity is identified by the destination
identifier and the third processing entity operates in the first
role specified by role identification information.

In certain embodiments, the second processing unit may be
further configurable to determine that a memory buffer
assigned for the application for receiving the packet for an
application from the first processing unit is filled beyond a
high threshold, and generate a congestion notification packet
for the first processing unit, in response to determining that
the memory buffer is filled beyond the high threshold. In other
embodiments, the second processing unit may be further
configurable to determine that the memory buffer assigned
for an application for receiving packets from the first process-
ing unit is cleared below a low threshold, and generate a clear
notification packet for the first processing unit, in response to
determining that the memory buffer is cleared below the low
threshold.

The foregoing, together with other features and embodi-
ments, will become more apparent when referring to the
following specification, claims, and accompanying drawings.

US 9,203,690 B2

3
BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a simplified block diagram of a network device
100 that may incorporate an embodiment of the present
invention;

FIG. 2 is another simplified block diagram of the network
device 100 that may incorporate another embodiment of the
present invention;

FIG. 3 is a simplified block diagram illustrating an exem-
plary packet for performing embodiments of the present
invention;

FIG. 4 is yet another simplified block diagram of the net-
work device that may incorporate embodiments of the present
invention;

FIG. 5 depicts an exemplary OSI network stack for the
networking protocols used in one embodiment of the present
invention;

FIG. 6 illustrates an exemplary addressing scheme for per-
forming embodiments of the invention;

FIG. 7 is a flow diagram, illustrating a method for perform-
ing embodiments of the invention;

FIG. 81is ablock diagram illustrating exemplary techniques
for providing back pressure notification from the receiver of
packets to the sender of the packets;

FIG. 9 is a flow diagram illustrating a method for prioriti-
zation of packets;

FIG. 10 is a flow diagram illustrating an exemplary
embodiment of the invention for sending a packet;

FIG. 11 is a flow diagram, illustrating one implementation
for maintaining resend message queues;

FIG.12A and FIG. 12B illustrate a flow diagram for receiv-
ing fragments of a message according to one or more embodi-
ments of the invention;

FIG. 13 is a flow diagram illustrating one implementation
for receiving messages at the application;

FIG. 14A and FIG. 14B are an exemplary Application
Programming Interface (API) call routine for performing
embodiments of the invention; and

FIG. 15A and FIG. 15B depict simplified block diagrams
of a network device for performing embodiments of the
present invention.

DETAILED DESCRIPTION

In the following description, for the purposes of explana-
tion, specific details are set forth in order to provide a thor-
ough understanding of embodiments of the invention. How-
ever, it will be apparent that the invention may be practiced
without these specific details.

Certain embodiments of the present invention provide
techniques that enable messages to be sent to a processing
entity within a computing device without knowing the IP
address of the processing entity. In certain embodiments,
instead of using an IP address of the processing entity, a
message can be communicated to the processing entity using
information indicative of a role or state or function performed
by the processing entity.

One or more packets may be used to communicate mes-
sages between processing entities. For example, if the size of
the message is 5 KB and the maximum transmission unit for
communicating between the processing entities is 1.5 KB, the
message may be split into 4 packets, with the last packet
containing 0.5 KBs. The packet may be a multicast packet or
amulticast-related packet carrying information from one pro-
cessing entity to another processing entity within the network
device, so that the network device may provide multicasting
functionality.

10

15

20

25

30

35

40

45

50

55

60

65

4

For example, in a network device, a communication infra-
structure is provided that enables messages or packets to be
sent to one or more processing entities within the network
device based upon roles, states, or functions performed by the
one or more processing entities. The communication infra-
structure allows multicasting of packets while ensuring reli-
able delivery of the packets. Further, the communication
infrastructure allows for prioritizing of the packets, allows for
delaying and buffering of the packets, and allows a packet to
be multicast to multiple intended recipients. The communi-
cation infrastructure also provides various congestion control
features including but not limited to providing back pressure
notification.

FIG. 1 is a simplified block diagram of a network device
100 that may incorporate an embodiment of the present
invention. Network device 100 may include multiple process-
ing entities. As shown in FIG. 1, an exemplary network device
100 may comprise first processing entity 104, second pro-
cessing entity 108 and third processing entity 112. In one
embodiment, the first processing entity 104 may be physi-
cally coupled to a Circuit Board 102. Other resources may be
available to the first processing entity 104, such as non-vola-
tile (not shown) and volatile memory (not shown) coupled to
the Circuit Board 102. In other implementations, a system-
on-a-chip (SoC) may be used to interconnect components
such as the processing entity with other computing resources,
such as memory, instead of a Circuit Board. Similarly, the
second processing entity 108 may be coupled to Circuit
Board 106 and third processing entity 112 may be coupled to
Circuit Board 110. The first processing entity 104, the second
processing entity 108 and the third processing entity 112 may
be electronically coupled together using bus 114.

Processing entities may include, but are not limited to
physical processing units, logical processing units or virtual
processing entities. In one implementation, processing enti-
ties may include a group of one or more processing units and
control circuits. For instance, a processing entity may be a
management card of a linecard. In another implementation, a
processing entity may be a processing unit, such as an Intel,
AMD, TI processor or ASIC running on a management or
linecard. In yet another implementation, the processing entity
may be a logical processing unit within a physical processing
unit. In yet another implementation, the processing entity
may be a virtual processing unit or a software partitioning
such as a virtual machine, hypervisor, software process or an
application running on a processing unit, such as a processor
but are not limited to physical processing units, logical pro-
cessing units or virtual processing entities.

One or more of the processing entities of network device
100 may operate in one or more roles. For example, in FIG. 1,
second processing entity 108 may be operating in a first role
and third processing entity 112 may be operating in a second
role. In some embodiments, the role that a particular entity
operates in may be based upon the functions that are per-
formed by the processing entity.

Certain embodiments of the present invention enable pack-
ets to be sent to entities based upon the roles of the entities.
For example, first processing entity 104 may desire to trans-
mit a packet to a processing entity operating in a particular
first role (e.g., the first role) but may not know the exact IP or
MAC address of the processing entity that is operating in that
particular role. A communication infrastructure is provided
that enables the packet sent by the first processing entity to be
addressed to an entity operating in a particular role without
needing the IP or MAC address of the entity. The communi-

US 9,203,690 B2

5

cation infrastructure ensures that the packet is reliably com-
municated to the one or more processing entities operating in
the particular role.

For example, first entity 104 may wish to transmit a mes-
sage to a processing entity operating in the second role. Cer-
tain embodiments of the present invention enable first entity
104 to address the message to be sent using the firstrole as an
addressing parameter. The message is then reliably commu-
nicated to all entities operating in the first role. Since the
message is communicated to all entities that may be operating
in the first role, the communication infrastructure acts as a
multicast architecture that enables a message to be multicast
to several possible recipients based upon the roles of the
recipients. Accordingly, the communication infrastructure
provides for multicasting while providing for reliable deliv-
ery of messages.

Accordingly, the role of the recipient is used as part of the
addressing scheme for sending a packet to its intended desti-
nation. FIG. 3 is an exemplary figure illustrating various
fields in a packet according to an embodiment of the present
invention. The placement of the fields may be altered without
altering the scope of the disclosure. As shown in FIG. 3,
packet 300 may comprise a header section 316 and a payload
section 314. Header section 316 comprises information
related to the packet including information indicative of the
destination of the packet. Payload 314, also referred to as the
body or data portion of a packet, stores that actual data or
message that is to be communicated to the destination.

In one implementation, the processing entities may deter-
mine the various roles present in the network device using
presence information. The presence information for the vari-
ous roles of the processing entities and applications in the
network device may be published to the processing entities in
the system. In another embodiment, the sending entity or
application may either learn or request the presence informa-
tion for determining the available roles in the network device.
The presence information allows the sender of the packet to
determine if a role is present or not present in the network
device. This may be advantageous in avoiding relying on
retries for determining if a specific role is available in the
network device and serviced by the processing entities of the
network device. In one example, a processing entity or an
application executing on a processing entity may be notified
that a specific role is available in the system at which point the
processing entity or the application executing on the process-
ing entity may send packets targeted to that role.

At a layer below the MI layer, at the Data Link Layer, the
packet encapsulation may have a protocol class field (not
shown). Protocol class field may store information identify-
ing the name of the protocol being used for communicating
the packet. For example, for packets being communicated
according to the unique protocol disclosed herein, a protocol
class name such as “ETH_P_MI” may be used to signify that
the packet belongs to a Messaging Infrastructure (MI) class
according to teachings of the present invention. Identifying
the messaging protocol allows the processing entities to
appropriately decode the rest of the packet. Ml is a network/
Transport layer protocol described herein for facilitating
transmitting and receiving packets to destinations that are
identified based upon the roles of the destinations.

In the embodiment depicted in FIG. 3, header 316 com-
prises pool identifier field 304, destination identifier field 306,
role identifier field 308, sequence number field 312, and frag-
ment number field 310.

Pool identifier field 304 stores information that associates
the packet with an application. The pool identifier field 304
allows the source processing entity to communicate with the

10

15

20

25

30

35

40

45

50

55

60

65

6

application on the destination processing entity. The pool
identifier field 304, in other words, specifies the application
role. Any applications interested in communicating with
applications servicing a specific role can send messages to a
pool name using the pool identifier field 304 in the packet.
Instantiations of the same application running on multiple
processing entities may use a common pool name.

In certain embodiments, destination identifier field 306 and
role identification information field 308 collectively store
information that identified the destination for the packet.
These two fields may thus collectively be referred to as des-
tination information for the packet and may identify one or
more intended destinations or recipients for the packet. Des-
tination identifier field 306 may identify one or more desti-
nation processing entities while role identification informa-
tion field 308 may further indicate that, from the one or more
processing entities identified by the destination identifier field
306, the packetis intended for a processing entity operating in
a specific role specified by role identifier field 308. In one
implementation, the information stored by destination iden-
tifier field 306 may be a bitmap identifying the various pro-
cessing entities in network device 100. Examples of roles may
include, but are not limited to one processing entity operating
in an active role and another processing entity operating in a
standby role.

The active role and the standby role referred to above relate
to the active-standby model that is used by many network
devices to enhance the availability of the network device.
According to the active-standby model, a network device may
comprise two processing units (e.g., two processors, two sets
of'virtual machines, etc.) where one of the processing units is
configured to operate in an “active” mode and the other is
configured to operate in a “passive” (or standby) mode. The
processing unit operating in the active mode (referred to as
the active processing unit) is generally configured to perform
a full set of networking functions while the processing unit
operating in passive mode (referred to as the passive process-
ing unit) is configured to not perform the full set of network-
ing functions or to perform only a small subset of the func-
tions performed by the active unit. Upon an event that causes
the active processing unit to reboot or fail (referred to as a
switchover or failover event), which may occur, for example,
due to an error in the active unit, the passive processing unit
starts to operate in active mode and starts to perform functions
that were being performed by the other processing entity in
active mode. The previous active processing unit may start to
operate in standby mode. Processing entities that are operat-
ing in active mode may thus be operating in the active role and
processing entities operating in the standby mode may thus be
operating in the standby role.

Packet header 316 may have additional fields including
sequence number field 312, fragment number field 310, last
fragment flag field (not shown), acknowledgment and reli-
ability requirements fields (not shown), and other control
information fields that are discussed in more detail below.

Referring back to FIG. 1, first processing entity 104 may
send a packet where destination identifier field 306 of the
packet identifies second processing entity 108 and third pro-
cessing entity 112 and role identification information field
308 of the packet specifies a first role. In one implementation,
both second processing entity 108 and third processing entity
112 receive the packet. However, third processing entity 112
discards the packet since the packet is intended only for the
processing entity operating in the first role, whereas the third
processing entity 112 is operating in the second role. How-
ever, third processing entity 112 discards the packet since the
packetis intended only for a processing entity operating in the

US 9,203,690 B2

7

first role, and third processing entity 112 knows that it is not
operating in the first role but instead operating in the second
role.

In some other embodiments, instead of or in addition to the
role identification information, the packet may also include a
state indicator field that stores information indicating a state
of'the intended destination processing entity. If such a state is
identified, a processing entity has to be in the specified state
(possibly, in addition to the specified role) to accept and
process the packet. For instance, a wakeup packet may be
intended for a processing entity in a power management state
of “deep sleep”. Similarly, a flush cache packet may be
intended for one or more processing entities with a cache state
that is “full” or “close to full”.

In some situations it is possible that, after first processing
entity 104 sends a packet intended for a processing entity
operating in the first role but before the packet is actually
delivered to the intended destination, an event occurs that
causes the roles of the processing entities to be changed. For
example, as shown in FIG. 2, the event may cause second
processing entity 108 and third processing entity 112 to
switch roles such that second processing entity 108 is now
operating in the second role and third processing entity 112 is
now operating in the first role. In such a scenario, when the
packet reaches second processing entity 108 and third pro-
cessing entity 112, second processing entity 108 may discard
the packet since the role criterion specified in the packet is not
satisfied by the second processing entity. Third processing
entity 112 may now accept the packet since it satisfies both the
destination identifier and rile indicator criteria specified by
the packet. Third processing entity 112 may commence addi-
tional processing of the packet. This is to be contrasted with
the situation in FIG. 1 where the same packet with the same
destination identifier and role identification information
would have been accepted by second processing entity 108,
and discarded by third processing entity 112.

In this manner, the addressing scheme according to certain
embodiments of the present invention enables a packet to be
correctly delivered to its correct intended destination (or mul-
tiple destinations) as identified by the destination identifier
and role identification information. The packet is reliably
delivered to the correct destination without the sender (first
processing entity 104) having to resend the packet (e.g., after
a switchover event) or without the sender having to even
know which particular processing entity is in which particular
role.

The switchover of the roles mentioned above between the
processing entities may occur due to a myriad of reasons,
including anticipated or voluntary events and unanticipated
or involuntary events. In one embodiment, the switchover of
roles may occur due to the inability of a processing entity to
continue to operate in the current role. A voluntary or antici-
pated event is typically a voluntary user-initiated event that is
intended to cause the active processing entity to voluntarily
yield control to the standby processing entity. An instance of
such an event is a command received from a network admin-
istrator to perform a switchover. There are various situations
when a network administrator may cause a switchover to
occur on purpose, such as when software on one of the pro-
cessing entities and the associated memories are linecards to
be upgraded to a newer version. As another example, a
switchover may be voluntarily initiated by the system admin-
istrator upon noticing performance degradation on the active
processing entity or upon noticing that software executed by
the active processing entity is malfunctioning. In these cases,
the network administrator may voluntarily issue a command
that causes a switchover, with the expectation that problems

10

15

20

25

30

35

40

45

50

55

60

65

8

associated with the current active processing entity will be
remedied when the standby processing entity becomes the
new active processing entity. A command to cause a switcho-
ver may also be initiated as part of scheduled maintenance.
Various interfaces, including a command line interface (CLI),
may be provided for initiating a voluntary switchover.

An involuntary or unanticipated switchover (also some-
times referred to as a failover) may occur due to some critical
failure (e.g., a problem with the software executed by the
active processing entity, failure in the operating system
loaded by the active processing entity, hardware-related
errors on the active processing entity or other router compo-
nent, and the like) in the active processing entity.

For example, the first role may be an active role and the
second role may be a standby role. As depicted in FIG. 1, the
second processing entity 108 may be initially in an active role
and the third processing entity 112 may be in a standby role.
The third processing entity 112 may have synchronized its
state to continue the networking function upon switching of
the roles. For example, in one implementation, the caches of
the third processing entity 112 may be kept up to date or
sufficiently up to date to seamlessly transition from a standby
role to an active role.

If the second processing entity 108 encounters an error,
requires a reboot or a software upgrade, the second process-
ing entity 108 may switch roles with the third processing
entity 112, as shown in FIG. 2. Now the second processing
entity 108 has the standby role and the third processing entity
112 has the active role.

FIG. 4 is another simplified block diagram of a network
device 400 that may incorporate an embodiment of the
present invention. Network device 400 may be a router or
switch that is configured to forward data such as a router or
switch provided by Brocade Communications Systems, Inc.
In one implementation the network device 400 may be con-
figured to perform multicast packet forwarding. The multi-
cast routing services include services and functions related to
facilitating routing of multicast data. In one embodiment,
network device 400 provides non-stop routing capability for
multicast routing even in the event a switchover occurs.

The network device 400 may comprise a plurality of ports
(not shown) for receiving and forwarding data packets and
multiple cards that are configured to perform processing to
facilitate forwarding of the data packets. The multiple cards
may include one or more linecards (412, 414, 416, 418, 420,
and 422 and one or more management cards (402 and 404).
Each card may have one or more processing entities and
various other computing resources, such as volatile and non-
volatile memory. Although referred to as a management card
or linecard, the card may be a System of a Chip (SoC) or a
circuit board. A card, sometimes also referred to as a blade or
module, can be inserted into the chassis of network device
400. This modular design allows for flexible configurations
with different combinations of cards in the various slots ofthe
device according to differing network topologies and switch-
ing requirements. The components of network device 400
depicted in FIG. 4 are meant for illustrative purposes only and
are not intended to limit the scope of the invention in any
manner. Alternative embodiments may have more or less
fewer components than those shown in FIG. 4.

The network device 400 may have linecard slots referred to
as LC slots (406, 408 or 410), in FIG. 4. In one implementa-
tion, a linecard slot may include multiple cards, referred to as
linecards. In another implementation, a linecard slot may
include one card with multiple processing units, operating
and referred to as individually a linecard. For example, refer-
ring to L.C slot 1 (406), 412 may be a first linecard with a first

US 9,203,690 B2

9

processing entity and 414 may be a second linecard with a
second processing entity. In the alternative, LC slot 1 (406)
may represent a single card with multiple processing entities,
such as a first processing entity 412 and a second processing
entity 414.

Network device 400 is configured or configurable to
receive and forward data using ports. Upon receiving a data
packet via an input port, network device 400 is configured to
determine an output port for the packet for transmitting the
data packet from the network device 400 to another neigh-
boring network device or network. Within network device
400, the packet is forwarded from the input port to the deter-
mined output port and transmitted from network device 400
using the output port. In one embodiment, forwarding of
packets from an input port to an output port is performed by
one or more linecards. Linecards represent the data forward-
ing plane of network device 400. Each linecard may comprise
a packet processing entity programmed to perform forward-
ing of data packets from an input port to an output port. A
packet processing entity on a linecard may also be referred to
as a linecard processing entity. Each packet processing entity
may have associated memories to facilitate the packet for-
warding process. Since processing performed by a packet
processing entity needs to be performed at a high packet rate
in a deterministic manner, the packet processing entity is
generally a dedicated hardware device configured to perform
the processing. In one embodiment, the packet processing
entity is a programmable logic device such as a field program-
mable gate array (FPGA). The packet processing entity may
also be an ASIC.

Management card (402 and 404) is configured to perform
management and control functions for network device 400
and thus represents the management plane for network device
400. In one embodiment, management cards (402 and 404)
are communicatively coupled to linecards using bus 424 and
include software and hardware for controlling various opera-
tions performed by the linecards. One or more management
cards may be used, with each management card controlling
one or more linecards.

A management card (402 and 404) may comprise one or
more management processing entities that are configured to
perform functions performed by the management card and
associated memory. Memory may be configured to store vari-
ous programs/code/instructions and data constructs that are
used for processing performed by the processing entity of the
management card (402 and 404). For example, programs/
code/instructions, when executed by the processing entity,
cause the next-hop information to be stored in an optimized
manner in memory. In one embodiment, the processing entity
is a general purpose microprocessor such as a PowerPC, Intel,
AMD, or ARM microprocessor, operating under the control
of software stored in associated memory.

In one embodiment, the functions performed by manage-
ment card (402 and 404) include maintaining a routing table,
creating associations between routes in the routing table and
next-hop information, updating the routing table and associ-
ated next-hop information responsive to changes in the net-
work environment, and other functions. In one embodiment,
a management processing entity on the management card is
configured to program the packet processing entities and
associated memories of linecards based upon the routing
table and associated next-hop information. Programming the
packet processing entities and their associated memories
enables the packet processing entities to perform data packet
forwarding in hardware. As part of programming a linecard
packet processing entity and its associated memories, the
management processing entity is configured to download

10

15

20

25

30

35

40

45

50

55

60

65

10

routes and associated next-hops information to the linecard
and program the packet processor and associated memories.
Updates to the next-hop information are also downloaded to
the linecards to enable the packet processors on the linecards
to forward packets using the updated information. Embodi-
ments of the invention enable efficient communication
between the various processing entities within the network
device 400 using a Messaging Infrastructure networking
layer protocol for performing embodiments of the invention
as discussed herein.

In one exemplary configuration of network device 400, the
network device 400 has an active management card 402 and a
standby management card 404. Furthermore, the network
device 400 may have one of more slots. As shown in FIG. 4,
the network device has 3 slots (406, 408 and 410) and each
slot has an active linecard and a standby linecard. For
example, linecard slot 1 (406) has an active linecard 412 and
a standby linecard 414.

During normal operation of the network device 400, one of
the two management cards 402 and 404 operates in active role
while the other management card operates in standby role.
The management card operating in active mode is referred to
as the active management card and is responsible for perform-
ing the control and forwarding functions, including functions
for providing multicast services, for network device 400. The
other management card operates in standby mode and is
referred to as the standby management card and does not
perform the functions performed by the active management
card. The active management card comprises the active man-
agement processing entity and the standby management card
comprises the standby processing entity. In the embodiment
depicted in FIG. 4, management card 402 is the active man-
agement card and management card 404 is the standby man-
agement card. A switchover may, however, cause manage-
ment card 404 to become the active management card and
management card 402 to become the standby management
card.

Similarly, each slot may have an active and a standby
linecard. During normal operation of the network device 400,
one of the two linecards (412 and 414) from the slot 406
operates in active role while the other management card oper-
ates in standby role. The linecard operating in active role is
referred to as the active linecard and is responsible for pro-
viding multicast services, for network device 400. The other
linecard operates in standby mode and is referred to as the
standby linecard and does not perform the functions per-
formed by the active linecard. The active linecard comprises
the active linecard processing entity and the standby linecard
comprises the standby processing entity. In the embodiment
depicted in FIG. 4, for slot 406, linecard 412 is the active
linecard and linecard 414 is the standby linecard; for slot 408,
linecard 416 is the active linecard and linecard 418 is the
standby linecard; and for slot 410, linecard 420 is the active
linecard and linecard 422 is the standby linecard. A switcho-
ver may, however, cause the active linecard to become the
standby linecard and the standby linecard to become the
active linecard.

During normal operations, the active processing entities of
the network device 400 are configurable to manage the hard-
ware resources of network device 400 and perform a set of
networking functions. During this time, the standby process-
ing entities may be passive and may not perform the set of
functions performed by the active processing entities. When a
switchover occurs, the standby processing entities become
the active processing entities and take over management of
hardware resources and performance of the set of functions
related to network device 400 that were previously performed

US 9,203,690 B2

11

by the processing entity that was previously active and, as a
result, the set of functions continues to be performed. The
previous active partition may then become the standby parti-
tion and be ready for a subsequent switchover. For example,
for the embodiment depicted in FIG. 4, for slot 406, a
switchover will cause standby linecard 414 to become the
new active linecard and active linecard 412 to become the new
standby linecard. The set of functions that are performed by
an active processing entity on the active card may differ from
one network device to another. The active-standby model
coupled with techniques described in this application enable
the set of functions including functions to be performed with-
out any interruption and any disruption to the applications
even during or after a switchover. This translates to higher
availability of network device 400.

A switchover may be caused by various different events,
including anticipated or voluntary events and unanticipated
or involuntary events. A voluntary or anticipated event is
typically a voluntary user-initiated event that is intended to
cause the active card to voluntarily yield control to the
standby card. An instance of such an event is a command
received from a network administrator to perform a switcho-
ver. There are various situations when a network administra-
tor may cause a switchover to occur on purpose, such as when
software on the management card and linecard processors is
to be upgraded to a newer version. As another example, a
switchover may be voluntarily initiated by the system admin-
istrator upon noticing performance degradation on the active
card or upon noticing that software executed by the active
card is malfunctioning. In these cases, the network adminis-
trator may voluntarily issue a command that causes a switcho-
ver, with the expectation that problems associated with the
current active card will be remedied when the standby card
becomes the new active card. A command to cause a switcho-
ver may also be initiated as part of scheduled maintenance.
Various interfaces, including a command line interface (CLI),
may be provided for initiating a voluntary switchover.

An involuntary or unanticipated switchover (also some-
times referred to as a failover) may occur due to some critical
failure (e.g., a problem with the software executed by the
active card, failure in the operating system loaded by the
active card, hardware-related errors on the active card or other
router component, and the like) in the active card.

In one embodiment, network device 400 is able to perform
a switchover without interrupting the network services
offered by network device 400. Network device 400 is able to
continue providing network services at line rates while per-
forming a switchover without experiencing any packet loss
after or due to a switchover. Accordingly, network device 400
is able to perform switchovers without impacting the for-
warding of multicast packets during or as a result of the
switchover.

In one embodiment, the standby card also maintains mul-
ticast information and the multicast information is periodi-
cally synchronized with the multicast information main-
tained by the active MP. Various synchronization techniques
are used to synchronize the multicast information maintained
by the standby card with multicast information maintained by
the active card. In one embodiment, the messages may be sent
to both the active and standby cards so that the standby card
may also update the information. In another embodiment, the
active and standby processing entities may exchange multi-
cast information to synchronize the multicast information.

The network device 400 of FIG. 4 illustrates a distributed
software model wherein each (active and standby) card on the
network device 400 has a processing entity executing its own
operating system, and networking and application stack to

10

15

20

25

30

35

40

45

50

55

60

65

12

perform collective routing tasks for the network device. The
processing entities may communicate with each other over
the bus 424. In one embodiment, the processing entities com-
municate with each other using networking protocols. FIG. 5
depicts an exemplary OSI network stack for the networking
protocols used in embodiments of the invention. Each card
shown in FIG. 4 depicts the network layer (NL) (428, 434,
etc.) and the data link layer (DLL) (430, 436, etc.) of the OSI
network stack executing on the card. However, the processing
entities on the cards may execute any number of the protocol
layers from the OSI network stack, as depicted in FIG. 5, for
communicating with each other.

Certain embodiments of the invention may implement a
novel Network layer and transport layer protocol, referred to
as Messaging Infrastructure (MI) 516 in this disclosure, and
depicted in FIG. 5, for optimized communication amongst the
various processing entities within the network device 400. In
one implementation, MI may use the Ethernet backbone as
the Data Link Layer for communicating amongst processing
entities.

FIG. 5 illustrates an OS] network stack that may be used in
embodiment of the invention. A network device may have
multiple processing entities within the device. In a distributed
software model, each processing entity may execute one or
more applications running on an operating system and net-
work system. The network system may comprise a network
stack, such as the OSI network stack 500, shown in FIG. 5.
The OSI network stack 500 may comprise the physical layer
514, the data link layer 512, the network layer (510 and 516),
the transport layer (508 and 516), the session layer 506, the
presentation layer 504 and the application layer 502.

Out of these layers from the OSI network stack, the net-
work layer provides the functional and procedural means of
transferring variable length data sequences from a source to a
destination, while maintaining the quality of service. One
well-known network layer protocol from the OSI network
stack is the Internet Protocol (IP). IP facilitates delivery of
packets from the source to the destination solely based on IP
addresses. For this purpose, IP defines datagram structures
that encapsulate the data to be delivered. IP based addressing
of the processing units requires associating each processing
entity with an [P address. Therefore, IP based communication
between the various processing entities does not allow flex-
ibility in addressing the processing entities based on the role
or state of the processing entity. For example, a networking
device may have a processing entity in an active role and a
processing entity in a standby role. IP based addressing does
not facilitate communication between the two entities using
the role or state of the device. For instance, an application
executing on the first processing entity that needs to commu-
nicate with a second processing entity in an active role must
first discover the current role of the one or more processing
entities before communicating with the active processing
entity.

Furthermore, if the role of the second processing entity
changes while the first processing entity is communicating
with the processing entity, the application executing on the
first processing entity needs to account for the change in the
role of the second processing entity. Discovering and keeping
track of the roles of the various processing entities in the
network device complicates the application programming
interface, increases the overhead and introduces errors into
the system.

Embodiments of the invention describe an alternate imple-
mentation of the Network layer protocol and transport layer
protocol, referred to as Messaging Infrastructure (MI) in this
disclosure. As shown in FIG. 5, in one implementation, MI

US 9,203,690 B2

13

may co-exist with other Network layer protocols, such as IP.
As discussed in FIG. 1, FIG. 2, and FIG. 4, an instantiation of
MI executing on any of the processing entities may be con-
figurable to retain hardware awareness. Hardware awareness
may refer to the awareness of the role the processing entity is
currently in. For instance, referring back to FIG. 1, an instan-
tiation of M1 executing on second processing entity 108 may
be aware that the second processing entity 180 is operating in
a first role and an instantiation of MI executing on the third
processing entity 112 may be aware that the third processing
entity 112 is operating in a second role. Similarly, now refer-
ring back to FIG. 4, on slot 406, an instantiation of MI execut-
ing on linecard 412 may be aware that its own role is the active
linecard with the active processing entity, and an instantiation
of'the M1 executing on the linecard 414 may be aware that its
own role is the standby linecard with the standby processing
entity. MI protocol may also include mechanisms for reliable
delivery of packets, prioritizing packets, delaying and buft-
ering packets and providing back pressure notification for
congestion control. These techniques are discussed in more
details in the figures below.

FIG. 6 illustrates an exemplary scheme for performing
embodiments of the invention, such as specifying the desti-
nation for a packet. FIG. 6 shows a subset of fields described
in FIG. 3 and is specific to a particular implementation, such
as the implementation shown in FIG. 4. FIG. 6 is shown for
illustration purposes and may not be construed to limit the
scope of the invention.

The LC slot role field 606 comprises slot bit information to
identify the LC slot number in the network device 400 that the
packet is targeted for. However, in an alternative implemen-
tation, the L.C slot bits may also referto a virtual slot. A virtual
slot may be migrated from one physical card or processing
unit to another. In one implementation, each slot on the net-
work device may be represented by a bit in the bitmap, allow-
ing for multiple destinations to be addressed using the same
packet. Other known and novel methods may be used for
selecting the slots on the network device, without departing
from the scope of the invention. As shown in FIG. 6, the
header may also have a MM slot role field 602, for assigning
bits to the management cards in the addressing scheme for
communicating with the management cards and their associ-
ated processing entities. In FIG. 4, in one example, as shown
in block 438, the slot bits of the address may be set to “101”,
wherein the first bit is set to *“1,” the second bit is set to “0,”
and the third bit is set to “1” by the processing entity at
management card 402. If Slot 1 is bit 0, Slot 2 is bit 1 and Slot
3 is bit 2 in the slot bits field information of the slot bits field
606, then setting the slot bits to 101 may select Slot 1 and Slot
3.

The role identification information field 608 may include
role identification information for additionally specifying the
role of the intended destination processing entity. In FIG. 4,
the management and linecards are either in active or standby
role. As shown in block 438 of FIG. 4, the management card
402 may generate a packet with the active (A) bit set in the
addressing scheme intended for the active linecard on the slot.
In one embodiment, the management card may send a mes-
sage to an active linecard for forwarding outside the network
device 400. For example, the packet arriving at the active
linecard may be sent out an egress port of the linecard. An MI
message can be routed to an outbound IP flow if a mapping is
configured at the linecard. In one additional aspect, the MI
message may be routed to another chassis.

In one implementation, the management card 402 may use
presence information in determining the roles available in the
network device. The presence information for the various

20

25

30

35

40

45

50

14

roles of the processing entities and applications in the net-
work device may be published to the various processing enti-
ties in the system. In another embodiment, the sending entity
or application may either learn or request the presence infor-
mation for determining the available roles in the network
device. The presence information allows the sender of the
packet to determine if a role is present or not present in the
network device. This may be advantageous in avoiding rely-
ing on retries for determining if a specific role is available in
the network device and serviced by the processing entities of
the network device. In one example, a processing entity or an
application executing on a processing entity may be notified
that a specific role is available in the system at which point the
processing entity or the application executing on the process-
ing entity may send packets targeted to that role.

The pool name field 604 includes pool name information
for identifying a pool associated with an application running
on one or more processing entities. The processing entities
may be configured to execute instantiations of one or more
applications. An application running on the source processing
entity may communicate with an application running on a
destination processing entity by associating a packet to a pool
name specified in the pool name field 604. In FIG. 4, the
source application executing on the processing entity of the
management card may interact with the processing entity on
the linecards using Pool A (426, 432).

The pool name field 604, in other words, may specify the
application role. Any applications interested in communicat-
ing with applications servicing a specific role can send mes-
sages to a pool name using the pool identifier field 604 in the
packet. In one implementation, a well-known list may be
published to all processing entities, so that the processing
entities may communicate with applications across different
processing entities.

Therefore, in FIG. 4, the packet transmitted from manage-
ment card 402 with the pool name information in the pool
name field 604 set to Pool A, the slot bits information in the
slot bits field 606 set to “101” and the role identification
information in the role identification information field 608 set
to Active for linecards are destined for applications associated
with Pool A, communicating through the MI protocol on the
active linecards 412 and 420. If for any reason, the active
linecard and the standby linecard switch on any of the slots,
the packet is automatically routed to the right linecard without
any disruption. In the unlikely event that the packet is lost in
transmission, and if it is a packet that requires an acknowl-
edgment, the sender may automatically resend the packet in
response to not receiving an acknowledgment for the packet.
The retransmission protocol is further discussed in more
detail in FIG. 10 and FIG. 11.

FIG. 7 is a flow diagram illustrating a method according to
one or more illustrative aspects of the disclosure. According
to one or more aspects, any and/or all of the methods and/or
method steps described herein may be implemented by com-
ponents of the network device 100 described in FIG. 1. In
other implementations, the method may be performed by
components of the network device described in FIG. 4, FIGS.
15A and 15B. In one embodiment, one or more of the method
steps described below with respect to FIG. 7 are implemented
by one or more processing entities of the network device.
Additionally or alternatively, any and/or all of the methods
and/or method steps described herein may be implemented in
computer-readable instructions, such as computer-readable
instructions stored on a computer-readable medium such as
the memory, storage or another computer readable medium.

At Step 702, a sender may generate a packet and specify
destination information for the packet identifying one or

US 9,203,690 B2

15

more intended destinations or recipients for the packet.
According to an embodiment of the present invention, the
specifying of the destination information includes specifying
a destination identifier 306, specifying role identification
information 308 and specifying a pool name 304 (application
role).

In one implementation, presence information for the vari-
ous roles of the processing entities and applications in the
network device may be published to the various processing
entities in the system. In another embodiment, the sending
entity or application may either learn or request the presence
information for determining the available roles in the network
device. The presence information allows the sender of the
packet to determine if a role is present or not present in the
network device. This may be advantageous in avoiding rely-
ing on retries for determining if a specific role is available in
the network device and serviced by the processing entities of
the network device. In one example, a processing entity or an
application executing on a processing entity may be notified
that a specific role is available in the system at which point the
processing entity or the application executing on the process-
ing entity may send packets targeted to that role.

At Step 704, the sender may transmit the packet from the
sender to one or more receivers. One of the receivers may be
operating in a first role.

At Step 706, one or more receivers may receive the packet.
At Step 708, one of the one or more receivers may determine
that they are the intended recipient based on the destination
identifier from the packet and that a first role identification
information from the packet is set to the first role. In one
implementation, the one or more receivers may generate an
acknowledgment packet for transmission to the sender, upon
determining that the receiving entity is the intended recipient.
In response, the sender may unblock the resources, such as
memory buffer after receiving the acknowledgement packet
for the packet. Furthermore, in one implementation, the
sender may resend the packet to the second processing entity
upon receiving an error packet or an expiry of a timer thresh-
old.

In one implementation, one of the receivers may operate in
a second role and receive the packet. The receiver may deter-
mine that the receiving entity is also the intended recipient
based on the destination identifier from the packet and that a
second role identification information from the packet is set to
the second role. In one exemplary scenario, two receivers may
switch roles, wherein one of the receivers is no longer avail-
able to operate in a particular role.

For example, for the embodiment depicted in FIG. 4, the
sender is the active management card 402. The receiver in the
first role may be the linecard 412 in an active role. And the
receiver in the second role may be the linecard 414 in the
standby role.

It should be appreciated that the specific steps illustrated in
FIG. 7 provide a particular method of switching between
modes of operation, according to an embodiment of the
present invention. Other sequences of steps may also be per-
formed accordingly in alternative embodiments. For
example, alternative embodiments of the present invention
may perform the steps outlined above in a different order. To
illustrate, a user may choose to change from the third mode of
operation to the first mode of operation, the fourth mode to the
second mode, or any combination therebetween. Moreover,
the individual steps illustrated in FIG. 7 may include multiple
sub-steps that may be performed in various sequences as
appropriate to the individual step. Furthermore, additional
steps may be added or removed depending on the particular

25

30

35

40

45

16

applications. One of ordinary skill in the art would recognize
and appreciate many variations, modifications, and alterna-
tives of the process.

FIG. 8is ablock diagram illustrating exemplary techniques
for providing back pressure notification for congestion con-
trol from the receiver of packets to the sender of the packets.
In FIG. 8, blocks 802 and 804 may be cards with processing
entities performing embodiments of the invention. Block 804
may represent a management card or a linecard of FIG. 4,
acting as a sender of packets and block 802 may represent a
management card or a linecard, acting as a receiver of pack-
ets. The processing entities at blocks 804 and 802 may be
running instantiations of the same application (810 and 808
respectively). The receiver 802, executing an instantiation of
MI, may also maintain a receiving queue with a high water
(HW) mark and a low water (LW) mark. As the sender con-
tinues to send packets, the receiving queue starts filling up.
The application 808 running at the receiver 802 consumes the
messages and releases the messages from the receive queue
806. However, in some instances, the application 808 may not
be able to consume messages at the same rate at which they
may arrive at the receiver 802. In such instances, the receiving
queue 806 may start filling up. If the receiving queue fills
beyond the high water mark, an instantiation of MI running at
receiver 802 may send a congestion notification to the sender
804.

In response to receiving the congestion notification, an
instantiation of the MI at the sender 804 may log an error for
the high water (HW) mark 812 and notify the application 810
that a congestion situation is in progress at the receiver 802.
The application 810 may respond to the notification by slow-
ing down or stopping its packet transmission to the receiver
802 for the application associated with Pool A on the receiver
802. As the congestion clears out and the application 808
consumes the messages from the receiving queue 806 at the
receiver 802, the receiving queue 806 may start emptying out.
When the receiving queue 806 is below the low water mark,
the receiver may send out a clear notification to the sender
804, indicating that the sender 804 may resume sending pack-
ets (ata faster pace). The low water (LW) mark bit 814 may be
set at the receiver. In response, the application 810 at the
sender may restart or fasten the transmission of packets. This
congestion management by back pressure notifications may
be advantageous in making efficient use of the bandwidth
without filling the transmission channel with packets that
cannot be accepted by the receiving entity.

FIG. 9 is a flow diagram illustrating a method for prioriti-
zation of messages. According to one or more aspects, any
and/or all of the methods and/or method steps described
herein may be implemented by components of the network
device 100 described in FIG. 1. In other implementations, the
method may be performed by components of the network
device described in FIG. 4, FIG. 15A and FIG. 15B. In one
embodiment, one or more of the method steps described
below with respect to FIG. 9 are implemented by one or more
processing entities of the network device. Additionally or
alternatively, any and/or all of the methods and/or method
steps described herein may be implemented in computer-
readable instructions, such as computer-readable instructions
stored on a computer-readable medium such as the memory,
storage or another computer readable medium.

The MI protocol, described herein for performing embodi-
ments of the invention, may also allow for multiple priority
levels for messages. In one implementation, eight different
priority levels may be allowed. At Step 902, the message is
assigned to a priority class by the sender. A message may be
assigned to a priority class based on the type of data and the

US 9,203,690 B2

17

application the data belongs to. For instance, real-time mes-
sages supporting video or voice may require higher priority
and lower reliability. Reliability for a message may be main-
tained by using acknowledgment responses (ACKs) proto-
cols for messages sent. Messages requiring ACKs may be
more reliable since the messages are retransmitted by the
sender if the message ACK is not received. Video and voice
messages may not be able to tolerate delays, but can tolerate
an appreciable level of packet loss.

At Step 904, the message is transmitted in order within the
same priority class. For example, in-order transmission of a
message, at a given priority class may mean that packets
transmitted by different applications using the same priority
may be transmitted on a first-come-first serve basis. For
instance, a first or oldest packet at a given priority queue is
transmitted first and the second or second oldest packet is
transmitted second. In some implementations, instantiation
of MI executing on the processing entities may maintain a
send message queue for each priority. When a time slot for
transmitting is available, the oldest message in the highest
priority queues may be transmitted. In one implementation,
the queues may be implemented using first-in first-out tech-
niques.

MI protocol, as described herein for performing embodi-
ments of the invention, may implement further optimizations
for buffering a message before transmitting the message. In
one implementation, a request for a delayed send may be
specified in the send message API call, as shown in FIG. 14B.
Messages are stored temporarily in a memory buffer of a
predetermined size, until the buffer is either full, a timer for
flushing the buffer expires or an explicit command for flush-
ing the buffer such as a delayed flush request is received. This
may be advantageous in reducing congestion on the commu-
nication plane between the processing entities and sending
messages as burst transactions.

FIG. 10 is a flow diagram illustrating an exemplary
embodiment of the invention for sending a packet. According
to one or more aspects, any and/or all of the methods and/or
method steps described herein may be implemented by com-
ponents of the network device 100 described in FIG. 1. In
other implementations, the method may be performed by
components of the network device described in FIG. 4, FIG.
15A and FIG. 15B. In one embodiment, one or more of the
method steps described below with respect to FIG. 10 are
implemented by one or more processing entities of the net-
work device. Additionally or alternatively, any and/or all of
the methods and/or method steps described herein may be
implemented in computer-readable instructions, such as
computer-readable instructions stored on a computer-read-
able medium such as the memory, storage or another com-
puter readable medium.

At Step 1002, an application executing at one of the pro-
cessing entities may initiate a request to send a message. In
one implementation, the request is made using an application
programming interface (API). Prior to making the request to
send the message, if a socket for communication for the
application does not already exist, the application may first
open a socket for sending the message. F1G. 14 A illustrates an
exemplary API for opening a socket. At the time of opening a
socket, the socket may be associated with a pool name. The
pool name is used by MI to differentiate between multiple
sockets. Opening a socket may be accomplished using creat-
ing and binding network socket operations provided by the
operating system and well-known in the art. Additional
parameters may be specified while opening a socket that are

20

35

40

45

50

55

18

then associated with the pool name, such as acknowledgment
requirements for transmitted messages associated with the
pool name.

Once a socket is opened, the application may make the
request to send a message using the “send message” request.
FIG. 14B illustrates an exemplary API for sending a message
using embodiments of the invention. The send message
request may include the pool name associated with the send
request, the destination information identifying the destina-
tion, a pointer to the payload and any additional parameters.

At Step 1004, the embodiments of the invention may frag-
ment the message into multiple fragments based on the maxi-
mum transmission unit (MTU). For example, if the size of the
message is 5 KB and the MTU is 1.5 KB, the message may be
split into 4 packets, with the last packet containing only 0.5
KBs. At Step 1006, as shown in FIG. 3, each packet is
assigned a sequence number 312 and fragment number 310.
The sequence number 312 identifies the message for purposes
of flow control, acknowledgements and in-order delivery. For
example, in an acknowledgement protocol, the receiver may
send back an acknowledgement message for the received
message, by associating the acknowledgement message to the
received message using the sequence number 312 from the
received message. The fragment number 310 may be used by
the receiver to reassemble the messages in the order they were
fragmented into packets. In addition, the last fragment of a
message may also have the “end fragment” flag set to indicate
to the receiver that the message is the last fragment in the
series of fragments for the message. The fragment of the
message may be encapsulated with additional header infor-
mation, as shown in FIG. 3, to generate a packet for transmis-
sion.

At Step 1008, components of the invention, such as one of
the processing entities, may transmit the message to one or
more destination processing entities. In one implementation
the message is sent over an Ethernet backplane.

At Step 1010, if the message is associated with a pool that
does not require an acknowledgement (as indicated in Step
1002), the send message routine is completed. However, if the
message is associated with a pool that requires an acknowl-
edgment for the transmitted message, at Step 1012, the mes-
sage is saved in a resend queue until an acknowledgement is
received. At Step 1014, embodiments of the invention may
perform the resend state machine to query any messages in
the priority queues that may need to be retransmitted. FIG. 11
further elaborates Steps 1012 and 1014.

FIG. 11 is a flow diagram, illustrating one implementation
for maintaining resend message queues. According to one or
more aspects, any and/or all of the methods and/or method
steps described herein may be implemented by components
of the network device 100 described in FIG. 1. In other
implementations, the method may be performed by compo-
nents of the network device described in F1G. 4, FIG. 15A and
FIG. 15B. In one embodiment, one or more of the method
steps described below with respect to FIG. 11 are imple-
mented by one or more processing entities of the network
device. Additionally or alternatively, any and/or all of the
methods and/or method steps described herein may be imple-
mented in computer-readable instructions, such as computer-
readable instructions stored on a computer-readable medium
such as the memory, storage or another computer readable
medium.

Messages are saved in the message queues when an ACK
message is expected for a message by the sending entity from
the receiving entity. In one implementation, as shown in FI1G.
14A, the ACK requirement for the messages associated with
apool name may be specified at the time of opening a socket.

US 9,203,690 B2

19

In one implementation, several priority levels may be sup-
ported for transmitting and receiving messages, as described
in FIG. 9. Messages eligible for transmission from the higher
priority queues may be transmitted prior to transmission of
messages from lower priority queues. A separate message
queue may be maintained for each priority level. The mes-
sages within each message queue may also be prioritized
based on a number of factors, including time of last transmis-
sion.

At Step 1102, the sending entity selects a message with the
highest priority from the message queues. At Step 1104, the
sending entity checks if the message is eligible for resending.
Eligibility for resending a message may be based on a number
of factors, such as age of the message, number of times the
message has been resent and ACK status of the message for
each destination for the message. [f the message is eligible for
resending, at Step 1108, the timestamp for the message is
updated and the message is resent to the destination (Step
1110). In one implementation, the message is resent using the
flow described in FIG. 10.

After resending the message, the sending entity checks if
all the messages in the queues have been traversed (Step
1118). If all the messages have not been traversed, then at
Step 1122, the sending entity selects the next highest priority
message and repeats the process of checking the eligibility of
the message at Step 1104. On the other hand, if all messages
in the priority resend queues have been traversed, the resend
state machine may go into sleep or wait for the next wake up
event (Step 1120). In one implementation a wake up event
may be a new message that is queued.

If the message is not eligible for resending, then, at Step
1106, the sending entity may check if the message is already
ACKed or Stale. At Step 1112, the message may be released
if it is ACKed for all the destinations the message is marked/
destined for. For instance, if the queued message was destined
for three different destinations, the message queue may moni-
tor ACK from all three destinations before releasing the mes-
sage. At Step 1118, once the message is released, the sending
entity may check if any additional messages need to be tra-
versed.

On the other hand, if the message is stale, the message may
be released (Step 1114) and an error may be reported (Step
1116). A message in the message queue may be considered
stale if the message has been sent to the destination without a
successful ACK for a predetermined number of times. The
error message may be used in determining remedial steps by
the application. At Step 1118, once the message is released
and the error is reported, the sending entity may check if any
additional messages need to be traversed.

FIG.12A and FIG. 12B illustrate a flow diagram for receiv-
ing fragments of a message according to one or more embodi-
ments of the invention. According to one or more aspects, any
and/or all of the methods and/or method steps described
herein may be implemented by components of the network
device 100 described in FIG. 1. In other implementations, the
method may be performed by components of the network
device described in FIG. 4, FIG. 15A and FIG. 15B. In one
embodiment, one or more of the method steps described
below with respect to FIG. 12A and FIG. 12B are imple-
mented by one or more processing entities of the network
device. Additionally or alternatively, any and/or all of the
methods and/or method steps described herein may be imple-
mented in computer-readable instructions, such as computer-
readable instructions stored on a computer-readable medium
such as the memory, storage or another computer readable
medium.

5

10

15

20

25

30

35

40

45

50

55

60

65

20

At Step 1202, the processing entity at the receiving end
receives a packet. The packet may comprise a complete mes-
sage or may be a fragment of the full message. At Step 1204,
the receiver may compare the destination information that
may include the destination identifier (ID) 306 and the role
identification information 308 against the destination infor-
mation of the receiver. If the destination information does not
match, the processing entity at the receiver may drop/discard
the packet (Step 1206).

In an exemplary embodiment, two linecards may be asso-
ciated with a single slot. The first linecard may operate in an
active role, whereas the second linecard may operate in a
standby mode. The destination identifier may correspond to
the slot number so the destination identifier for both linecards
may match the destination identifier in a received packet for
either of the linecards. The role identification information
may additionally indicate whether the packet is for the pro-
cessing entity in the active role or the processing entity in the
standby role. If the role identification information also
matches the current role of the processing entity, the packet
for the message is accepted and further processed. Otherwise,
the packet may be dropped or discarded.

At Step 1208, the receiver determines if the packet is a
control packet or a data packet. Control packets may include
a complete message and the processing entity at the receiver
may not expect any more fragments associated with the mes-
sage. A control packet may be an ACK message or a Thresh-
old notification. If the packet is an ACK message, then at
1210, the receiver may update the message queues, using the
sequence number from the ACK message. At Step 1212, ifthe
message in the message queue receives ACKs from all the
destinations that the message was delivered to, then the
resend state machine, from FIG. 11, may be invoked. At Step
1214, if the control message is a Threshold message the
message is delivered to the application. If the Threshold mes-
sage is a High Threshold or Congestion notification message
the application may slow down or stop sending new messages
until the application receives Low Threshold or clear notifi-
cation messages indicating that the congestion has at least
partially been resolved.

Ifthe packet is a data packet, then at Step 1216, the message
is reassembled using the received packet. The sequence num-
ber 312 and the fragment number 310 may be used in reas-
sembling the message. The sequence number 312 identifies
the message that the packet belongs to and the fragment
number 310 helps determine the sequence in which the frag-
ment may be assembled together. The last fragment in the
sequence of fragments may have a flag indicating that it is the
last fragment of the plurality of fragments to reassemble the
message associated with the sequence number. At Step 1218,
the receiver may determine based on the fragment flag if the
packet was the last fragment of the plurality of fragments and
if the message is complete. If the message is not complete,
then at Step 1220, the routine will return until the next frag-
ment in the sequence arrives. If the message is complete, then
at Step 1222, the receiver finds the pool associated with the
application, using the pool name from the packet header. At
Step 1224, if the pool is not found, then the receiver sends a
negative acknowledgment (or NACK) to the sender (Step
1226). If the pool is found, the receiver checks if the threshold
for the receiving queue is exceeded, at Step 1228, and sends
a High Threshold message or a Congestion notification mes-
sage to the sender to either slow or stop sending more mes-
sages until resources are freed up (Step 1230). At Step 1232,
the receiver checks if the pool queue is full. If the pool queue
is full, at Step 1234, the message is dropped or discarded. If
the queue is not full, the message is delivered to the applica-

US 9,203,690 B2

21

tion through the pool queue at Step 1236. At 1238, the
receiver responds to the sender with an ACK message if the
sender expects an ACK response. In one implementation, the
expectation of an ACK response may be included in the
packet or message header.

It should be appreciated that the specific steps illustrated in
FIG. 12A and FIG. 12B provide a particular method of
switching between modes of operation, according to an
embodiment of the present invention. Other sequences of
steps may also be performed accordingly in alternative
embodiments. For example, alternative embodiments of the
present invention may perform the steps outlined above in a
different order. To illustrate, a user may choose to change
from the third mode of operation to the first mode of opera-
tion, the fourth mode to the second mode, or any combination
therebetween. Moreover, the individual steps illustrated in
FIG. 12A and FIG. 12B may include multiple sub-steps that
may be performed in various sequences as appropriate to the
individual step. Furthermore, additional steps may be added
or removed depending on the particular applications. One of
ordinary skill in the art would recognize and appreciate many
variations, modifications, and alternatives of the process.

FIG. 13 is a flow diagram illustrating one implementation
for receiving messages at the application. According to one or
more aspects, any and/or all of the methods and/or method
steps described herein may be implemented by components
of the network device 100 described in FIG. 1. In other
implementations, the method may be performed by compo-
nents of the network device described in FIG. 4, F1G. 15A and
FIG. 15B. In one embodiment, one or more of the method
steps described below with respect to FIG. 13 is implemented
by one or more processing entities of the network device.
Additionally or alternatively, any and/or all of the methods
and/or method steps described herein may be implemented in
computer-readable instructions, such as computer-readable
instructions stored on a computer-readable medium such as
the memory, storage or another computer readable medium.

At Step 1302, the application executing on the processing
entity may invoke the Read Message API. At Step 1304, the
Read Message APl may deliver the message with the highest
priority to the application. If the read is a blocking read, the
Read Message call may not return until the message is
received or the Read Message API times out. If it is deter-
mined, at Step 1306 that the pool buffer has a High Threshold
set and has crossed below the Low Threshold, a Clear Noti-
fication Message (or Low Threshold message) may be sent to
the sender (Step 1308).

FIG. 14A and FIG. 14B are an exemplary Application
Programming Interface (API) call routine for performing
embodiments of the invention. Prior to making the request to
send the message, if a socket for communication for the
application does not already exist, the application may first
open a socket for sending the message. F1G. 14 A illustrates an
open socket API call. The API may take as parameters, the
pool_name and open_parameters and may return the mi_s-
ocket for sending messages. The pool_name is used by MI to
differentiate between multiple sockets. The open_parameters
may include, but are not limited to ACKed and Delayed send
timeout and buffer size. Setting the ACKed parameter may
require the sending entity to queue the message associated
with the pool, until an ACK is received from the receiving
entity of the message. FIG. 11 discusses the resend protocol
that manages the resend message queues. The delayed send
timeout and buffer size may manage buffering of data asso-
ciated with the pool. For instance, messages may be buffered
until either the buffer size is reached or the timer times out
according to the timeout value set in the parameters. Opening

20

25

40

45

55

22

a socket may generally refer to creating an association
between the application, file descriptor for the socket and a
name tag for the socket. Opening a socket may be accom-
plished using creating and binding network socket operations
well-known in the art.

Once a socket is opened, the application may make the
request to send a message using the “send message” request.
FIG. 14B illustrates an exemplary API for sending a message
using embodiments of the invention. The send message
request may include the pool name associated with the send
request, the destination information identifying the destina-
tion, a pointer to the payload and any additional parameters.
The additional parameters may include priority of the mes-
sage within the priority queues. For instance, a real-time
application use of a message, such as a voice or video mes-
sage may be sent with higher priority than data for an FTP
transfer of data. The delayed send parameter may indicate
that the message may be delayed and sent with other mes-
sages using the delay buffer. The delayed flush parameter may
explicitly flush out all the contents of the delay buffer.

FIG. 15A depicts a simplified block diagram of a network
device 1500A that may be configured to perform embodi-
ments of the present invention. The Network device 1500A
illustrates only one management card and linecard for illus-
trating purposes, but may be extended to provide multiple
management cards and linecards as shown in FIGS. 1, 2, and
4. Network device 1500A may be a router or switch that is
configured to forward data such as a router or switch provided
by Brocade Communications Systems, Inc. In the embodi-
ment depicted in FIG. 15A, network device 1500A comprises
a plurality of ports 1502 for receiving and forwarding data
packets and multiple cards that are configured to perform
processing to facilitate forwarding of the data packets. The
multiple cards may include one or more linecards 1504 and
one or more management cards 1506. A card, sometimes also
referred to as a blade or module, can be inserted into the
chassis of network device 1500 A. This modular design allows
for flexible configurations with different combinations of
cards in the various slots of the device according to differing
network topologies and switching requirements. The compo-
nents of network device 1500A depicted in FIG. 15A are
meant for illustrative purposes only and are not intended to
limit the scope of the invention in any manner. Alternative
embodiments may have more or fewer components than those
shown in FIG. 15A.

Ports 1502 represent the I/O plane for network device
1500A. Network device 1500A is configured to receive and
forward data using ports 1502. A port within ports 1502 may
be classified as an input port or an output port depending upon
whether network device 1500A receives or transmits a data
packet using the port. A port over which a data packet is
received by network device 1500A is referred to as an input
port. A port used for communicating or forwarding a data
packet from network device 1500A is referred to as an output
port. A particular port may function both as an input port and
an output port. A port may be connected by a link or interface
to a neighboring network device or network. Ports 1502 may
be capable of receiving and/or transmitting different types of
data traffic at different speeds including 1 Gigabit/sec, 10
Gigabits/sec, or more. In some embodiments, multiple ports
of network device 1500A may be logically grouped into one
or more trunks.

Upon receiving a data packet via an input port, network
device 1500A is configured to determine an output port for
the packet for transmitting the data packet from the network
device to another neighboring network device or network.
Within network device 1500A, the packet is forwarded from

US 9,203,690 B2

23

the input network device to the determined output port and
transmitted from network device 1500A using the output
port. In one embodiment, forwarding of packets from an input
port to an output port is performed by one or more linecards
1504. Linecards 1504 represent the data forwarding plane of
network device 1500A. Each linecard 1504 may comprise
one or more packet processing entities 1508 that are pro-
grammed to perform forwarding of data packets from an input
portto an output port. A packet processing entity on a linecard
may also be referred to as a line processing entity. Each packet
processing entity 1508 may have associated memories to
facilitate the packet forwarding process. In one embodiment,
as depicted in FIG. 15A, each packet processing entity 1508
may have an associated content addressable memory (CAM)
1510 and a RAM 1512 for storing forwarding parameters
(RAM 1512 may accordingly also be referred to as a param-
eter RAM or PRAM). In one embodiment, for a packet
received via an input port, the packet is provided to a packet
processing entity 1508 of a linecard 1504 coupled to the input
port. The packet processing entity receiving the packet is
configured to determine an output port of network device
1500A to which the packet is to be forwarded based upon
information extracted from the packet. The extracted infor-
mation may include, for example, the header of the received
packet. Inone embodiment, a packet processing entity 1508 is
configured to perform a lookup in its associated CAM 1510
using the extracted information. A matching CAM entry then
provides a pointer to a location in the associated PRAM 1512
that stores information identifying how the packet is to be
forwarded within network device 1500A. Packet processing
entity 1508 then facilitates forwarding of the packet from the
input port to the determined output port.

Since processing performed by a packet processing entity
1508 needs to be performed at a high packet rate in a deter-
ministic manner, packet processing entity 1508 is generally a
dedicated hardware device configured to perform the process-
ing. In one embodiment, packet processing entity 1508 is a
programmable logic device such as a field programmable gate
array (FPGA). Packet processing entity 1508 may also be an
ASIC.

Management card 1506 is configured to perform manage-
ment and control functions for network device 1500A and
thus represents the management plane for network device
1500A. In one embodiment, management card 1506 is com-
municatively coupled to linecards 1504 and includes software
and hardware for controlling various operations performed
by the linecards. In one embodiment, a single management
card 1506 may be used for all the linecards 1504 in network
device 1500A. In alternative embodiments, more than one
management card may be used, with each management card
controlling one or more linecards.

A management card 1506 may comprise a processing
entity 1514 (also referred to as a management processing
entity) that is configured to perform functions performed by
management card 1506 and associated memory 1516. As
depicted in FIG. 15A, the routing table 1518 and associated
next-hop and RI information may be stored in memory 1516.
The next-hop and RI information may be stored and used in
an optimized manner as described above. Memory 1516 is
also configured to store various programs/code/instructions
1522 and data constructs that are used for processing per-
formed by processing entity 1514 of management card 1506.
For example, programs/code/instructions, which when
executed by processing entity 1514 cause the next-hop infor-
mation to be stored in an optimized manner may be stored in
memory 1516. In one embodiment, processing entity 1514 is
a general purpose microprocessor such as a PowerPC, Intel,

40

45

55

24

AMD, or ARM microprocessor, operating under the control
of software 1522 stored in associated memory 1516.

In one embodiment, the functions performed by manage-
ment card processing entity 1514 include maintaining a rout-
ing table, creating associations between routes in the routing
table and next-hop information, updating the routing table
and associated next-hop information responsive to changes in
the network environment, and other functions. In one
embodiment, management processing entity 1514 is config-
ured to program the packet processing entities and associated
memories of linecards 1504 based upon the routing table and
associated next-hop information. Programming the packet
processing entities and their associated memories enables the
packet processing entities to perform data packet forwarding
in hardware. As part of programming a linecard packet pro-
cessing entity and its associated memories, management pro-
cessing entity 1514 is configured to download routes and
associated next-hops information to the linecard and program
the packet processing entity and associated memories.
Updates to the next-hop information are also downloaded to
the linecards to enable the packet processing entities on the
linecards to forward packets using the updated information.

FIG. 15B depicts another example of a network device
1500B that may incorporate an embodiment of the present
invention. Network device 1500B is similar to network device
1500A depicted in FIG. 15A and described above except that
linecard 1504 additionally comprises a processing entity
1530 and associated memory 1532. Processing entity 1530
may be a CPU similar to management processing entity 1514.
In this embodiment, linecard memory 1532 may store routing
table 1534 and associated next-hop information 1536. Pro-
cessing entity 1530 uses the routing and next-hop information
stored in memory 1532 to program the packet processing
entities and their associated memories on the linecard. In one
embodiment, routing table 1534 and associated next-hop
information 1536 is kept synchronized with routing table
1518 and next-hop information 1520 stored by management
card 1506. Management card 1506 is configured to download
the routing and associated next-hop information stored in its
memory 1516 to a linecard 1504. The routing and next-hop
information downloaded to a linecard 1504 from the manage-
ment card is then stored in memory 1532 of the linecard and
used to program packet processing entities 1508 and their
associated memories. When changes are made to the routing
table and associated next-hop information stored in manage-
ment card 1506, the changes are downloaded to the linecard
so that the routing and next-hop information stored in
memory 1532 of the linecard can be updated to reflect the
changes.

As described above, for both network device embodiments
depicted in FIGS. 15A and 15B, routing table and associated
next-hop information is downloaded from a management
card to a linecard. In the embodiment depicted in FIG. 15A
the information may be downloaded as part of the manage-
ment processing entity programming the packet processing
entities and associated memories on the linecard. For the
embodiment depicted in FIG. 15B, the information may be
downloaded and stored in memory 1532 on the linecard.
Processor 1530 on the linecard may then use the stored infor-
mation to program the packet processing entities and their
associated memories. In one embodiment, the whole routing
table and associated next-hop information is downloaded to
the linecard from the management card. The use of sharable
next-hops and sharable Rls, as described above, makes the
process of updating the linecards fast and efficient. In the past,
downloading routing table and associated next-hop informa-
tion to a linecard from the management processing entity

US 9,203,690 B2

25

involved downloading to the linecard information identifying
each of the routes in the routing table and, for each route,
next-hop information for the route.

Although specific embodiments of the invention have been
described, various modifications, alterations, alternative con-
structions, and equivalents are also encompassed within the
scope of the invention. Embodiments of the present invention
are not restricted to operation within certain specific data
processing environments, but are free to operate within a
plurality of data processing environments. Additionally,
although embodiments of the present invention have been
described using a particular series of transactions and steps,
these are not intended to limit the scope of inventive embodi-
ments.

Further, while embodiments of the present invention have
been described using a particular combination of hardware
and software, it should be recognized that other combinations
of hardware and software are also within the scope of the
present invention. Embodiments of the present invention may
be implemented only in hardware, or only in software, or
using combinations thereof.

The specification and drawings are, accordingly, to be
regarded in an illustrative rather than a restrictive sense. It
will, however, be evident that additions, subtractions, dele-
tions, and other modifications and changes may be made
thereunto without departing from the broader spirit and scope
of the invention.

What is claimed is:
1. A network device comprising:
a plurality of ports for receiving and forwarding data traf-
fic;
a first processing entity and a second processing entity
configurable to process the data traffic for forwarding;
the first processing entity further configurable to transmit a
packet comprising destination information, the destina-
tion information comprising a destination identifier and
role identification information, the destination identifier
identifying a set of one or more destinations, the role
identification information identifying a role;
the second processing entity further configurable to:
receive the packet;
determine, based upon the destination information of the
packet, that the second processing entity is an
intended recipient for the packet if the second pro-
cessing entity is identified by the destination identifier
and the second processing entity operates in a first
role specified by role identification information; and
transmit an acknowledgment packet to the first process-
ing entity, upon determining that the second process-
ing entity is the intended recipient; and
the first processing entity further configurable to release
resources associated with the packet after receiving the
acknowledgement packet for the packet.
2. The network device of claim 1, further comprising
a third processing entity configurable to:
receive the packet; and
determine, based upon the destination information of the
packet, that the third processing entity is an intended
recipient for the packet if the third processing entity is
identified by the destination identifier and the third
processing entity operates in a second role specified
by role identification information.
3. The network device of claim 2, wherein
the first role is an active role and the second processing
entity is further configurable to perform a set of routing-
related functions in the active role; and

5

10

15

20

25

30

35

45

50

55

60

65

26

the second role is a standby role and the third processing
entity is further configurable to not perform the func-
tions of the active role in the standby role.

4. The network device of claim 1, wherein the first process-
ing entity is further configurable to retransmit the packet upon
receiving an error packet or an expiry of a timer threshold.

5. The network device of claim 1, further comprising

a third processing entity configurable to switch to the first

role from a second role, wherein the second processing

entity is no longer available to operate in the first role,

the third processing entity further configurable to:

receive the packet; and

determine, based upon the destination information ofthe
packet, that the third processing entity is an intended
recipient for the packet if the third processing entity is
identified by the destination identifier and the third
processing entity operates in the first role specified by
the role identification information.

6. The network device of claim 1, wherein the packet is
transmitted using an Ethernet protocol implemented in a net-
working stack executing on the first processing entity.

7. The network device of claim 1, wherein the packet is
assigned a priority class from a plurality of priority classes.

8. The network device of claim 7, wherein the packet is
delivered in the same order relative to other packets within the
same priority class to the second processing entity that the
packet is transmitted from the first processing entity.

9. The network device of claim 1, wherein the second
processing entity is further configurable to:

determine that a memory buffer assigned for the applica-

tion for receiving the packet from the first processing
entity is filled beyond a high threshold; and

generate a congestion notification packet for the first pro-

cessing entity, in response to determining that the
memory buffer is filled beyond the high threshold.

10. The network device of claim 1, wherein the second
processing entity is further configurable to:

determine that a memory buffer assigned for an application

for receiving packets from the first processing entity is
cleared below a low threshold; and

generate a clear notification packet for the first processing

entity, in response to determining that the memory
buffer is cleared below the low threshold.

11. A method comprising:

generating, using a first processing entity, a packet com-

prising destination information, the destination informa-
tion comprising a destination identifier and role identi-
fication information, the destination identifier
identifying a set of one or more destinations, the role
identification information identifying a role;

transmitting the packet from the first processing entity to a

second processing entity;

determining, at the second processing entity, based upon

the destination information of the packet, that the second
processing entity is an intended recipient for the packet
if the second processing entity is identified by the des-
tination identifier and the second processing entity oper-
ates in a first role specified by the role identification
information;

transmitting, by the second processing entity, an acknowl-

edgment packet to the first processing entity, upon deter-
mining that the second processing entity is the intended
recipient; and

releasing resources associated with the packet, by the first

processing entity, after receiving the acknowledgement
packet for the packet.

US 9,203,690 B2

27

12. The method of claim 11, further comprising:

receiving, at a third processing entity, the packet; and

determining, by the third processing entity, based upon the

destination information of the packet, that the third pro-
cessing entity is an intended recipient for the packet if >
the third processing entity is identified by the destination
identifier and the third processing entity operates in a
second role specified by the role identification informa-
tion.

13. The method of claim 12, wherein the first role is an
active role, wherein the second processing entity performs the
set of routing-related functions in the active role, and the
second role is a standby role, wherein the third processing
entity does not perform the functions of the active role in the
standby role.

14. The method of claim 11 further comprises retransmit-
ting the packet, by the first processing entity, upon receiving
an error packet or an expiry of a timer threshold.

10

15

28

15. The method of claim 11, further comprising:
switching a third processing entity to operate in the first
role from a second role, wherein the second processing
entity is no longer available to operate in the first role;
receiving, at the third processing entity, the packet; and
determining, at the third processing entity, based upon the
destination information of the packet, that the third pro-
cessing entity is an intended recipient for the packet if
the third processing entity is identified by the destination
identifier and the third processing entity operates in the
first role specified by the role identification information.
16. The method of claim 11, wherein the packet is assigned
apriority class from a plurality of priority classes and wherein
the packet is delivered, in the same order relative to other
packets within the same priority class, to the second process-
ing entity, that the packet is transmitted from the first process-
ing entity.

